
Exploring Linux API
Practical Asynchronous and Interprocess Communication Patterns

Henrique Marks

May 15, 2025

Henrique Marks Exploring Linux API May 15, 2025 1 / 32

TOC

1 Overview

2 Low-Level Application

3 Middle Level Application

4 Ethernet Receiver - Test Application

5 Low-Level Application - Multiplexing

6 Low-Level Application - Signals ad Timers

7 Integration with External Libraries

Henrique Marks Exploring Linux API May 15, 2025 2 / 32

Introduction

Topics

Take a tour of some Linux User space APIs.

Focus on Event-Driven Programming.

Focus on Inter-Process Communication mechanisms.

Integration with other libraries.

Example Driven

Create a multi-application project.

For each application, show some IPC mechanism and the event-driven
main loop.

Add more and more functionality.

Henrique Marks Exploring Linux API May 15, 2025 3 / 32

Introduction

Topics

Take a tour of some Linux User space APIs.

Focus on Event-Driven Programming.

Focus on Inter-Process Communication mechanisms.

Integration with other libraries.

Example Driven

Create a multi-application project.

For each application, show some IPC mechanism and the event-driven
main loop.

Add more and more functionality.

Henrique Marks Exploring Linux API May 15, 2025 3 / 32

Project

Turtle!

A device can be moved forward (1 step) or rotated (90°). It can be
controlled via Ethernet.

Create a Low-Level Application that sends Ethernet commands to the
device.

Create a middle-level application that communicates with the
low-level app, sending the device to some position.

Create a high-level application(GUI) that communicates with the
middle-level one.

Additional: testing apps.

Definition

All applications are event-driven.

Showing different IPC mechanisms.

Henrique Marks Exploring Linux API May 15, 2025 4 / 32

Project

Turtle!

A device can be moved forward (1 step) or rotated (90°). It can be
controlled via Ethernet.

Create a Low-Level Application that sends Ethernet commands to the
device.

Create a middle-level application that communicates with the
low-level app, sending the device to some position.

Create a high-level application(GUI) that communicates with the
middle-level one.

Additional: testing apps.

Definition

All applications are event-driven.

Showing different IPC mechanisms.

Henrique Marks Exploring Linux API May 15, 2025 4 / 32

Architecture

High -Level App

|

| (FIFO)

|

Middle -Level App

|

| (FIFO)

| (Message Queue)

|

Low -Level App

|

| (Message Queue)

| (Sockets - Ethernet)

|

Receiver App (Test)

|

| (Sockets - Ethernet)

Henrique Marks Exploring Linux API May 15, 2025 5 / 32

Low-Level Application - main

Low-Level main application

Create the LowLevelApp object, pass the message queue name and
the Ethernet interface name

Run the event loop.

int main()

{

LowLevelApp app("/turtle_cmd", "tap0");

app.run();

}

Henrique Marks Exploring Linux API May 15, 2025 6 / 32

Low-Level Application - The API

Design Choices and API

Low Level Application knows about moving Forward and Rotating.

Translates the message queue commands into Ethernet.

It is stateless.

enum class CommandType : uint8_t

{

MOVE_FORWARD = 1,

ROTATE_90 = 2

};

Design

This presentation does not focus on design.

But a better design should hide this enum in a proper API.

Henrique Marks Exploring Linux API May 15, 2025 7 / 32

Low-Level Application - The API

Design Choices and API

Low Level Application knows about moving Forward and Rotating.

Translates the message queue commands into Ethernet.

It is stateless.

enum class CommandType : uint8_t

{

MOVE_FORWARD = 1,

ROTATE_90 = 2

};

Design

This presentation does not focus on design.

But a better design should hide this enum in a proper API.

Henrique Marks Exploring Linux API May 15, 2025 7 / 32

Low-Level Application - Definition

class LowLevelApp {

public:

LowLevelApp(string& mq_name , string& interface);

void run();

private:

int mq_fd_;

int raw_sock_fd_;

int epoll_fd_;

std:: string interface_;

void setup_message_queue(string& mq_name);

void setup_raw_socket ();

void event_loop ();

void handle_command ();

void send_ethernet_command(CommandType cmd);

};

Henrique Marks Exploring Linux API May 15, 2025 8 / 32

Low-Level Application - constructor

LowLevelApp :: LowLevelApp(string& mq_name , string&

interface) : interface_(interface) {

setup_message_queue(mq_name);

setup_raw_socket ();

epoll_fd_ = epoll_create1 (0);

epoll_event ev{};

ev.events = EPOLLIN;

ev.data.fd = mq_fd_;

epoll_ctl(epoll_fd_ , EPOLL_CTL_ADD , mq_fd_ , &ev);

}

Henrique Marks Exploring Linux API May 15, 2025 9 / 32

Low-Level Application - setup raw socket

void LowLevelApp :: setup_raw_socket () {

raw_sock_fd_ = socket(AF_PACKET , SOCK_RAW , htons(0

x88B5));

struct ifreq ifr {};

std:: strncpy(ifr.ifr_name , interface_.c_str(),

IFNAMSIZ);

sockaddr_ll saddr {};

saddr.sll_family = AF_PACKET;

saddr.sll_ifindex = ifr.ifr_ifindex;

saddr.sll_protocol = htons (0x88B5);

bind(raw_sock_fd_ , reinterpret_cast <sockaddr *>(&

saddr), sizeof(saddr));

}

Henrique Marks Exploring Linux API May 15, 2025 10 / 32

Low-Level Application - setup message queue

void LowLevelApp :: setup_message_queue(string& mq_name)

{

struct mq_attr attr {};

attr.mq_flags = 0;

attr.mq_maxmsg = 10;

attr.mq_msgsize = 1;

mq_fd_ = mq_open(mq_name.c_str(), O_RDONLY |

O_CREAT , 0644, &attr);

}

Henrique Marks Exploring Linux API May 15, 2025 11 / 32

Low-Level Application - event loop

void LowLevelApp :: event_loop () {

while (true) {

epoll_event ev{};

int nfds = epoll_wait(epoll_fd_ , &ev , 1, -1);

if (nfds > 0 && ev.data.fd == mq_fd_) {

handle_command ();

}

}

}

Henrique Marks Exploring Linux API May 15, 2025 12 / 32

Low-Level Application - handle command

void LowLevelApp :: handle_command ()

{

char buffer;

ssize_t n = mq_receive(mq_fd_ , &buffer , 1, nullptr);

if (n == 1)

{

CommandType cmd = static_cast <CommandType >(buffer);

send_ethernet_command(cmd);

}

}

Send Ethernet Frame

Sending the Ethernet Frame is not going to be shown here, refer to the
repository. It is just sent using the socket and bit banging.

Henrique Marks Exploring Linux API May 15, 2025 13 / 32

Middle Level Application

Explanation

The middle level app receives commands from a FIFO.

The commands are simple: ”move to position (x,y)”.

It implements an algorithm to do the movement.

It translates to the low level interface (commands in the message
queue).

It is state-full, keeping the position of the object.

Differences

It is the same type of application. Event-Driven, epoll based, but
using a FIFO, and writing to the message queue.

Let’s check the differences.

Henrique Marks Exploring Linux API May 15, 2025 14 / 32

Middle Level Application

Explanation

The middle level app receives commands from a FIFO.

The commands are simple: ”move to position (x,y)”.

It implements an algorithm to do the movement.

It translates to the low level interface (commands in the message
queue).

It is state-full, keeping the position of the object.

Differences

It is the same type of application. Event-Driven, epoll based, but
using a FIFO, and writing to the message queue.

Let’s check the differences.

Henrique Marks Exploring Linux API May 15, 2025 14 / 32

Middle-Level App - create and handle FIFO

void createFifo () {

mkfifo(FIFO_PATH , 0666);

fifo_fd_ = open(FIFO_PATH , O_RDONLY | O_NONBLOCK);

}

void handleFifoInput () {

char buf [256] = {0};

ssize_t count = read(fifo_fd_ , buf , sizeof(buf) -1);

std:: istringstream iss(std:: string(buf , count));

// Read Line , parse and call algorithm () method

// Threads and State Machines here

}

Henrique Marks Exploring Linux API May 15, 2025 15 / 32

Middle-Level App - send command

Algorithm and Commands

Given the initial position and the requested position, an algorithm defines
the sequence of FORWARD and ROTATE commands to send to the
low-level app.

void sendCommand(uint8_t cmd) {

mq_send(mq_ , reinterpret_cast <const char*>(&cmd),

1, 0);

}

Henrique Marks Exploring Linux API May 15, 2025 16 / 32

Ethernet Receiver - Test Application

Explanation

The receiver application is simple, just receive Ethernet Packets.

Because of that, let’s use io uring instead of epoll!

Differences

io uring is newer, from kernel 5.1, and later on adopted in Userspace
apps. It has been created to be used when there is a need for greater
throughput, and as always, low-latency. It can be implemented
without resorting to receiving threads (done by kernel queues).

Henrique Marks Exploring Linux API May 15, 2025 17 / 32

Ethernet Receiver - Test Application

Explanation

The receiver application is simple, just receive Ethernet Packets.

Because of that, let’s use io uring instead of epoll!

Differences

io uring is newer, from kernel 5.1, and later on adopted in Userspace
apps. It has been created to be used when there is a need for greater
throughput, and as always, low-latency. It can be implemented
without resorting to receiving threads (done by kernel queues).

Henrique Marks Exploring Linux API May 15, 2025 17 / 32

Ethernet Receiver - io uring init

io_uring ring;

io_uring_queue_init(QUEUE_DEPTH , &ring , 0) != 0);

Explanation

Initializes an io uring instance with a submission/completion queue of
size QUEUE DEPTH.

ring: Holds internal state for io uring operations.

QUEUE DEPTH: Number of concurrent I/O operations we will queue
(here, 8).

Henrique Marks Exploring Linux API May 15, 2025 18 / 32

Ethernet Receiver - io uring init

io_uring ring;

io_uring_queue_init(QUEUE_DEPTH , &ring , 0) != 0);

Explanation

Initializes an io uring instance with a submission/completion queue of
size QUEUE DEPTH.

ring: Holds internal state for io uring operations.

QUEUE DEPTH: Number of concurrent I/O operations we will queue
(here, 8).

Henrique Marks Exploring Linux API May 15, 2025 18 / 32

Ethernet Receiver - Submission Queue

io_uring_sqe* sqe;

sqe = io_uring_get_sqe (&ring);

io_uring_prep_recv(sqe , sock_fd , buffers[i],

BUFFER_SIZE , 0);

io_uring_sqe_set_data(sqe , buffers[i]);

io_uring_submit (&ring);

Explanation

Declare an associate submission queue to the ring.

Associate a recv syscall to the sqe, passing the fd and buffers.

Buffers will be returned by sqe.

Submit the ring and sqe to the kernel.

Henrique Marks Exploring Linux API May 15, 2025 19 / 32

Ethernet Receiver - Submission Queue

io_uring_sqe* sqe;

sqe = io_uring_get_sqe (&ring);

io_uring_prep_recv(sqe , sock_fd , buffers[i],

BUFFER_SIZE , 0);

io_uring_sqe_set_data(sqe , buffers[i]);

io_uring_submit (&ring);

Explanation

Declare an associate submission queue to the ring.

Associate a recv syscall to the sqe, passing the fd and buffers.

Buffers will be returned by sqe.

Submit the ring and sqe to the kernel.

Henrique Marks Exploring Linux API May 15, 2025 19 / 32

Ethernet Receiver - Completion Queue

while (true) {

io_uring_cqe* cqe;

io_uring_wait_cqe (&ring , &cqe);

uint8_t* data = io_uring_cqe_get_data(cqe);

ssize_t len = cqe ->res;

/* Use data */

io_uring_cqe_seen (&ring , cqe);

}

Explanation

Declare and wait on a completion queue related to the ring.

Get data and length.

Mark the Completion Queue as seen.

2 queues: sqe writes buffer to cqe.

Henrique Marks Exploring Linux API May 15, 2025 20 / 32

Ethernet Receiver - Completion Queue

while (true) {

io_uring_cqe* cqe;

io_uring_wait_cqe (&ring , &cqe);

uint8_t* data = io_uring_cqe_get_data(cqe);

ssize_t len = cqe ->res;

/* Use data */

io_uring_cqe_seen (&ring , cqe);

}

Explanation

Declare and wait on a completion queue related to the ring.

Get data and length.

Mark the Completion Queue as seen.

2 queues: sqe writes buffer to cqe.

Henrique Marks Exploring Linux API May 15, 2025 20 / 32

Low-Level App - Add Logs

Explanation

Application uses a small log library.

Log Level is configured via configuration file.

Monitor file change, and call hlog reload method to update log level.

Use inotify API to monitor file changes

Epoll loop will multiplex, monitor multiple file descriptors.

Henrique Marks Exploring Linux API May 15, 2025 21 / 32

Logs - setup inotify

void LowLevelApp :: setup_inotify () {

inotifyFd_ = inotify_init1(IN_NONBLOCK);

string path = "hlog.conf";

inotifyWatch_ = inotify_add_watch(inotifyFd_ , path.

c_str (), IN_CLOSE_WRITE);

}

Henrique Marks Exploring Linux API May 15, 2025 22 / 32

Logs - handle inotify

void LowLevelApp :: handle_inotify ()

{

struct inotify_event *event;

ssize_t len = read(inotifyFd_ , buf , sizeof(buf));

for (char *ptr = buf; ptr < buf + len; ptr +=

sizeof(struct inotify_event) + event ->len)

{

event = (const struct inotify_event *)ptr;

if (event ->mask & IN_CLOSE_WRITE)

{

HLOG_INFO("Reload Called");

hlog_reload ();

}

}

}

Henrique Marks Exploring Linux API May 15, 2025 23 / 32

Logs - epoll loop

void LowLevelApp :: event_loop () {

const int MAX_EVENTS = 10;

struct epoll_event ev[MAX_EVENTS];

while (true) {

int nfds = epoll_wait(epoll_fd_ , ev , MAX_EVENTS ,

-1);

for (int i = 0; i < nfds; ++i) {

if (ev[i].data.fd == mq_fd_) {

handle_command ();

}

else if (ev[i].data.fd == inotifyFd_) {

handle_inotify ();

}

}

}

}

Henrique Marks Exploring Linux API May 15, 2025 24 / 32

Low-Level App - Signal and Timer

Signal

Use Ctrl-C to quit the application

Capture the signal SIGINT, and print a nice message

Use SignalFD API, to integrate nicely with epoll.

Timer

Every 10 seconds, simulate that we send a ”keep-alive message”

Use TimerFD API, to create the timer and integrate nicely with epoll.

Henrique Marks Exploring Linux API May 15, 2025 25 / 32

Signals - setup signal

void LowLevelApp :: setup_signal ()

{

sigset_t mask;

sigemptyset (&mask);

sigaddset (&mask , SIGINT);

sigprocmask(SIG_BLOCK , &mask , nullptr);

signal_fd_ = signalfd(-1, &mask , SFD_NONBLOCK);

}

Henrique Marks Exploring Linux API May 15, 2025 26 / 32

Signals - handle signal

void LowLevelApp :: handle_signal ()

{

struct signalfd_siginfo si;

ssize_t bytes = read(signal_fd_ , &si , sizeof(si));

if (si.ssi_signo == SIGINT)

{

std::cout << "\n[LowLevelApp] Caught SIGINT (

Ctrl+C). Shutting down gracefully ...\n";

running_ = false;

}

}

Henrique Marks Exploring Linux API May 15, 2025 27 / 32

Timer - setup timer

void LowLevelApp :: setup_timer ()

{

timer_fd_ = timerfd_create(CLOCK_MONOTONIC ,

TFD_NONBLOCK);

struct itimerspec ts{};

ts.it_interval.tv_sec = 10; // Repeating interval

ts.it_interval.tv_nsec = 0;

ts.it_value.tv_sec = 10; // Initial expiration

ts.it_value.tv_nsec = 0;

timerfd_settime(timer_fd_ , 0, &ts, nullptr);

}

Henrique Marks Exploring Linux API May 15, 2025 28 / 32

Timer - handle timer

void LowLevelApp :: handle_timer ()

{

uint64_t expire;

ssize_t s = read(timer_fd_ , &expire , sizeof(expire))

;

keepaliveNum_ ++;

HLOG_DEBUG("[LowLevelApp] KeepAlive %d Sent",

keepaliveNum_);

}

Henrique Marks Exploring Linux API May 15, 2025 29 / 32

Integration with 0mq

0mq

Use zmq getsockopt(socket, ZMQ FD, fd, fdSize) and epoll on fd.

When triggered, call zmq getsockopt(ZMQ EVENTS) to check for
read/write 0mq events.

Henrique Marks Exploring Linux API May 15, 2025 30 / 32

Integration with MQTT - Mosquitto

Mosquitto API

Create mosquitto client, connect and get fd

int fd = mosquitto socket(mosq);

In the Epoll Loop use Mosquitto Non-Blocking API

mosquitto loop read(mosq, 1);

mosquitto loop write(mosq, 1);

Call periodically the following method for keepalive messages

mosquitto loop misc(mosq);

Henrique Marks Exploring Linux API May 15, 2025 31 / 32

Conclusion and Links

Links

040coders May 2025 on GitLab

Linux online man pages

Nice book to have

Conclusion

Thanks!

Henrique Marks Exploring Linux API May 15, 2025 32 / 32

https://gitlab.com/henriquemarks/040coders_may_2025
https://man7.org/linux/man-pages/
https://man7.org/tlpi/index.html

	Overview
	Low-Level Application
	Middle Level Application
	Ethernet Receiver - Test Application
	Low-Level Application - Multiplexing
	Low-Level Application - Signals ad Timers
	Integration with External Libraries

