HOW TO
CONTINUOUSLY
AND EFFICIENTLY
REJUVENATE A
SOFTWARE CODE
BASE?

May 16", 2024 | 040coders | Niels Brouwers

NIELS BROUWERS - SOLUTION ARCHITECT

Accelerate software development

Increasing the level of abstraction

Intensifying the level of automation

Model-driven engineering (MDE)

Automated software rejuvenation

w to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 . CompanyCon fidential © Capgemini 2022. All rights reserve d |

WH7

.. The need For more efficient code rejuvenatlon7

4

w) \ \

Who has some understanding of what legacy SW is?

Who is working on legacy SW?
Who likes working on legacy SW?

Who wants to get rid of legacy SW?

LEGACY SW?

1000M
Autonomous Car

. 4 F

100M
Luxury car

25M
F35 Fighter Jet

10M

145K
(0] Moon lander

Deteriorated software quality

Outdated technologies
Dead and obsolete code

“Software that notably resists modification or evolution” Lack of knowledge

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 5

HOW LEGACY SOFTWARE (INEVITABLY?) IS CREATED OVER TIME

Accumulation of technical debt, to the point where software resists being modified

More
Advanced
Higher
: More
Technical
Debt Software
Lower More
Velocity Maintenance

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

Each Full-time developer can maintain “only” 50KLoc’

Many companies don't have “luxury” to spend 200
FTE to maintain a 10 MLoC code base

Prevent legacy SW by performing
maintenance more efficiently!

TWayne Lobb e.a “Software Development and Maintenance Effort/Cost Models”, Foilage
whitepaper
Company Confidential © Capgemini 2022. All rights reserved |

6

HOW:?
... 1o effectively rejuvenate a code base?!

‘
| -

ooooooooo inuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 ! Company Confidential © Capgemini 2022. Allrightsreserved | 7

SOLUTION: AUTOMATE SOFTWARE MAINTENANCE ...

Software Maintenance Tasks Replacement of code patterns, automatable!
<file>.cpp
Read before {
Solve architect | d . :
olve architecture Improve code ‘ boost::foo($argl, $arg2, $$args);
generalize AST } after {
std::foo($arg2, $argl, true, $$args);
Query& }
Rewrite
' *
Remove obsolete Migrate to Sl

and dead code improved API

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 8

... CONTROLLED & RISK-FREE WHEN INTEGRATED INTO CI/CD ...

ln} P Develop

Dev

Development CI/CD

Build & > Review

Test PR =» Accept =P Release

=) =)
&b

, t“l—b Refactor
XD

Refactor Bot

(N\ N\
if before {
] Speci y boost::api_func($argl, $arg2, $$args); Q) L)
() Refactoring } after { p g
. . std::api_func($arg2, $argl, true, $$args);
Rejuvenation)

Refactor

DeV . _ J J
Portfolio

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 9

... FOLLOWING AN AUTOMATED AND CONTINUOUS PROCESS ...

libA s0

moduleB.h

moduleA cpp

m == m

7Y
.
.
|
!

A
[
| implements Ilmp-li-m‘.'—r.t-:-

|
moduleB._cpp
i

1
|
| implements

1. Analyze

[(] 4. Prevent
“Where?”

" "7
e “No more!”

- 3. Refactor 2. Monitor & Plan
"= “Doit” 0\ “When?”

Checkins Peak Checkouts Peak

Date Selection: 051021201021 05.10.2021-19.102021 ~
18% 56%

[) | [1 ondtey [2 Tuesdoy (2] 3 wosnencny [4 oy [2] vty [

before {
boost::api_func($argl, $arg2, $$args);

Timeline Checkins / Checkouts
EICHECKINS - CHECKDUTS

} after {
std::api_func($arg2, $argl, true, $$args) -

ot
CoRbeCL0O0wB0LDdIDDoDEI 00 a
Time.

Company Confidential © Capgemini 2022. All rights reserved |

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

WE INTERRUPT THIS PROGRAM FOR A

COMMERCIAL BREAK

How to continuously and efficiently rejuvenate a software code base2|Niels Brouwers [SMay 2024 Company Confidential © Capgemini 2022. All rights

... ENABLED BY R.E.B.O.R.N.

- - Checkins Peak Checkouts Peak
ProducerClass Date Selection: 05.10.21-20.10.21 05.10.2021 - 19.10.2021 ins Peal eal

B an | [1Monday (7] 2Tuesday (2] 3Wednesday (7] 4 Thurssny (7] shitay [18% 56%

before {
boost::api_func($argl, $arg2, $$args);
} after {

.g:d 3 s.g:“ - T std::api_func($arg2, $argl, true, $$args)
‘ i- ¥
@l Analysis 'f"7‘ Reporting .'.Q Quality Guarding =.—> 3N R-Actions
“Where?” “When?” T “Prevent!” - “Here it is!”

Software Intelligence

= Extractors (code, project, architecture)

Powered by: Supporting:

"ESl :Neodj & @

docker Grafana

SCE.

Company Confidential © Capgemini 2022. All rights reserved | 12

= CI/CD Integrated
= Centralized in Graph Database

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

L

\Loer

WHAT?

... iIs happening under the hood, |
and show me some use cases, please!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 13

CODE REFACTORING AT SCALE, RIGOUROUS AND DETERMINISTIC

replaceName("FunctionCallExpression™,

<file>.cpp "boost::api_func",” std::api_func");
Read before {
boost::api_func($argl, $arg2, $$args);
e 2 }after {
std::api_func($arg2, $argl, true, $$args)
Query & ¥
Rewrite
ASTFinder.findAll(atu, IASTFunctionCallExpression.class)
<file>.cpp* .Stream()

3 .map(IASTFunctionCallExpression::getFunctionNameExpression)
filter(e->"boost::api_func".equals(e.toString()))
forEach(e->rewrite.replace(e, "std::api_func"));

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 14

DEMO: AUTOMATED CODE REFACTORING USING REBORN

before {

boost::api_func($argl, $arg2, $$args);
} after {

std::api_func($arg2, $argl, true,

m
m
REBORN ’ §$args)
O
‘

R-Actions
REBORN Refactor DSL Portfolio

EEEanFOI\: Download Clone Target Execute Code
Pipeline REBORN Repository Refactor DSL

v REFACTORCDEMO [F B2 U &

> copier

> extraction
> inc

> printer

> public

> refactor

nnnnnnn

~

E%‘“’\?"E?‘OEJ

.gitignore
¥ .gitlab-ciyml
£ .project

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 15

SOME EXAMPLES OF AUTOMATED SOFTWARE MAINTENANCE

Solving code defects & smells
Convert test-suites to GoogleTest
Removal of dead and obsolete code

Make source- & project files self-contained

ow to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 16

MIGRATION OF TEST SUITES FROM BOOST.TEST TO GOOGLE TEST

* Mainly standard refactoring using the refactor DSL were used.

replace{ LOTST_TEST_REQUIRE(!$value):} with {

ith - AEEEHT LT(Ou, $act) << $value2; }

ith { ASSERT_LT($exp, $act) << $va
ith 1 ASSERT_EQ($exp, Sact) << §$va

¥ ith 1 ASSERT_EQ(, Sact) << $va

wvalue2) :t vith { ASSERT_NE($exp, $act) << $va

« Complex cases were handled by a specific method that directly manipulates the AST. For
instance:

migrateTestClassToGoogleTest();
removeTestMainFromProject();

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 17

MIGRATION OF TEST SUITES FROM PROPRIETARY TO GOOGLE TEST

#include statements

#include <afx_h>

using namespace System;

using namespace System::Text;

using namespace Sustem::Collection::Generic;

using namespace Microsoft::VisualStudio::TesiTools::UnitTesting

#include statements Proprietary Testing static constant example;

:: ::E:EE:Z {ﬁi?]lggdfsl'is}n:ase.h namespace ExampleUnitTest

i . [TestClass]
static constant example; public ref class UnitTest1

Test* ExampleTestCase::suite() { private:
{ :

A .
TestSuite* testSuite = new TestSuite(); Refactoring TestContext" testContextinstance;

] public:
testSuite-=add(new TestCaller<ExampleTestCase.h=(; . P I P A
“ExampleTest”, &ExampleTestCase:ExampleTest)): property Microsoft::Visual Studio::TestTools::UnitTesting::TestContext® TestContext

{

retumn testSuite; Microsoft::Visual Studio:: TestTools::UnitTesting:: TestContext* get()

} {

return testContextinstance;

. H
typedef example; System::Void setiMicrosoft::VisualStudio:: TestTools::UnitTesting::TestContext* value)

void ExampleTestCase::ExampleTest{) {

}

testContextinstance = value;

b

typedef example;

[TestMethod]
void ExampleTest()

{

Assert::IsTrue(medium.Material.size() == 1);

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 18

MIGRATION OF TEST SUITES FROM PROPRIETARY TO GOOGLE TEST

public static Writable<IASTNode> refactorTestCase(Writable<IASTNode> writable, String... args){
var decl = ASTFactory.getDeclaration("$type* $namespace::suite() {$$statements;}");
var filename = writable.getNode().getContainingFilename();
var name = filename.isBlank() ? "Ms"
Path.of(filename).getParent().getParent().getFileName().toString();
var match = ASTFinder.findFirst(writable.getNode(), decl);
if (match==null) {
return writable;
}

writable = replaceAssertCondition(writable);

writable = replaceAssert(writable);

var functionsToMove = functionsToMove(writable);

var othersToMove = othersToMove(writable, decl);

var moveOthersAsString = toMoveOthersAsString(othersToMove);

var moveFunctionsAsString = toMoveFunctionsAsString(writable, functionsToMove);

writable
writable

= removeFunctions(writable, functionsToMove);
removeOthers(writable, othersToMove);

match = ASTFinder.findFirst(writable.getNode(), decl);

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

String replaceString =
namespace %sUnitTest

{
| [TestClass]
public ref class UnitTestl

{

private:
TestContext” testContextInstance;

public:
property Microsoft::VisualStudio::TestTools::UnitTesting::TestContext” TestContext

{
Microsoft::VisualStudio::TestTools::UnitTesting::TestContext” get()

{
} .
System: :Void set(Microsoft::VisualStudio::TestTools::UnitTesting::TestContext” value)

{
}

return testContextInstance;

testContextInstance = value;
}

%s
%s

};

""" _formatted(name, indent(moveOthersAsString, 3*4), indent(moveFunctionsAsString,
writable.replace(match.getNodes()[@], replaceString);

writable = addsIncludesAndNamespaces(writable);
writable = removeUnusedIncludes(writable);

return writable.commit();

Company Confidential © Capgemini 2022. All rights reserved | 19

SOLVING CODE DEFECTS & SMELLS

Rule: replace

Diff:

Violation code

F Gk

strcpy |:'I."E|-|_|_|E_|:|t|-' - 4022.000.000.08");
*valid_ptr = FALSE;

Description

ANSI C functions shall not be called if there is an
equivalent safer function

Only the predefined macro names __FILE_ , LINE__
and __ func__ may be used.

For a struct the initializer should be {0} or all fields
should be initialized.

Naming convention of the include guard of an include
file named CCBB_foo.h is of format CCBB_FOO_H.

Macros shouldn't end with a semicolon.

Use a semicolon at the end of a function-like macro call.

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

strcpy_s(value_ptr, sizeof(value_ptr),
*valid_ptr = FALSE;

Some violations are related
and therefore non-trivial!

Company Confidential © Capgemini 2022. All rights reserved | 20

REMOVAL OF OBSOLETE CODE

If-Statement Pattern

lterative approach, based on investigation of 4 patterns:
Identify common patterns referring to obsolete constructs if (<condition referring to obsolete keywords>) {

statements; Remove Entirely

Remove the patterns '
Analyze new code state |

If-Else-Statement Pattern

Remove dead code

if (=condition referring to obsolete keywords=) {
if-block statements;

}else {
else-block statements;

else-block
statements;

._}

Case Pattern

For-Loop Pattern

-~

/- switch{message)

for {int i = 0; =condition referring to obs. code=; i++) {
statements; Remove Entirely

case =<message referring to obsolete code>:
action; switch{message)
break; {
case message case messagel
action; action;
break; break;
case <message referring to obsolete code>: 1
action;
break;

}

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 21

REMOVAL OF OBSOLETE CODE

public static Writable<IASTNode> removeForLoop(Writable<IASTNode> rewriter, String pattern) {

NodeUtil.findInFileAsStream(rewriter.getNode(), IASTForStatement.class) //findInFileAsStream only accepts classes
.filter(f->eligible(f.getConditionExpression(),pattern))
.forEach(rewriter::remove);

return rewriter.commit();

}

public static Writable<IASTNode> removeCaseStatement(Writable<IASTNode> rewriter, String pattern) {
var statements = ASTFactory.getStatements("case $cond: $$statements; break;");
for (var match : ASTFinder.findStatements(rewriter.getNode(), statements)) {
if (match.getSingleAsRawSignature("$cond").matches(pattern)) {
rewriter.remove(match.getNodes());

¥
¥

return rewriter.commit();

public static Writable<IASTNode> removeIfStatement(Writable<IASTNode> rewriter, String pattern) {
NodeUtil.findInFileAsStream(rewriter.getNode(), IASTIfStatement.class)

.filter(is->eligible(is.getConditionExpression(), pattern))
.forEach(is->{

if(is.getElseClause()==null) {
rewriter.remove(is); //if will never be trigger anymore]|

else {
var ec = is.getElseClause();

var hasDeclaration = ASTFinder.findFirst(ec, IASTDeclarationStatement.class)!=null;
if(hasDeclaration) {

rewriter.replace(is, ec.getRawSignature()):

else {

var elseBlock = is.getElseClause().getRawSignature().trim();

if (elseBlock.charAt(e) == '{' && elseBlock.charAt(elseBlock.length() - 1) == '}") {
var replacement = elseBlock.substring(l, elseBlock.length() - 1);
rewriter.replace(is, replacement.trim().indent(-4));

} else {
rewriter.replace(is, elseBlock);

3

b
s

return rewriter.commit();

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 22

REMOVAL OF OBSOLETE CODE

switch(message)

1

case tatramed::data::object::C_DO_Plan: :Added_Beam:|
m_Plan—>OnAddedBeam((tatramed: :data: :object: : C_DO_Beam*)para
break;| 11

case tatramed::data::object::C_DO_Plan: :Deleted_Beam:|
m_Plan->OnDeletedBeam((tatramed: :data: :object: : C_DO_Beam+)pa

reak;

case tatramed::data::object::C_DO_Plan: :Changed_Name:
m_Plan->0nChangedName();
break;

case tatramed::data::object::C_DO_Plan: :Changed_MNotes:
m_Plan->0nChangedNotes();
break;

case tatramed::data::object::C_DO_Plan: :Changed_Intent:
m_Plan->0OnChangedPlanIntent();
break;

for(unsigned i = 8; i < pBlock->m_Bars; i++)
|
ids[i] = (int)(INT_PTR)pInfo—>m_arrBarID[i];

if(m_bCreateBeamInProgress)

i
ASSERT(m_CreatedBeam == nullptr);
m_CreatedBeam = doBeam;
m_bCreateBeamInProgress = false;
H

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

27
28
29
38

31
32
33
34
35
36
37
38
39
4@

switch(message)

{

case tatramed::data::object::C_DO_Plan: :Changed_Name:

i m_Plan->=0OnChangedName() ;

; break;

case tatramed::data::object::C_DO_Plan: :Changed_Notes:
| m_Plan->0OnChangedNotes();

: break;

case tatramed::data::object::C_DO_Plan::Changed_Intent:
| m_Plan->0nChangedPlanIntent();

| break;

Company Confidential © Capgemini 2022. All rights reserved | 23

MAKE SOURCE FILES SELF-CONTAINED

) R relatlwzi include 'L - H
B '/Add declaration file m\' bindingFile);atements based on th:\] [/ schedule adding \] I m p le men ted N

| soillncludes for that I= current istinclude missingIncludes for this
Abinding is a semantic used to identify l\\pamcular binding Flle/l declarationFile ____ (file-in-focus) / ‘. file J ~600 J ava LOC
constructs like a CPP Function or a C Struct. T

/runusedlnt.ludes is \ g schedule removing ™
B Add macro | difference of istincludes | [unusedincludes for this]

|//_references and\l \ FROM solincludes)/ file J
- - @

A solinclude is a term we use for includes that definining files
are needed from the calling file (binding file). __ separately __,r" rd Y I
= missingincludes is] Sl n g

difference of solincludes

B |//_(13—hetiitl]|_a 3§5qciate-;\| AN FROM istincludes e Renaissance +
with a binding's name 4

An istinclude is a term we use for includes that .
are already present in the calling file (binding AN ¥ / [/ Get file paths A EClI pse C DT AP I S

s
]
E
-1
14

file). associated with each

//Eaet declaration;\ \include statemem/
associated with a

binding's names//

Standard +
company specific

e _L\ ,-/ Cycle through each \-,
—_— scheduled file and perform l
/’ ‘\\ .fﬁgt) /—Extract macro ‘\\ I/éroup include statemer:ths\.,).{ Loop through each)I adding and removing rU eS
| Generate ASTs of and their paths based on }_[™ \ istinclude Y, ‘-\ operations /-’

scoped files ;/p/ \filmpgfgfeannci? aff/J—)l their enclosing file | Logi%g:r:gligh — -
' - \\ (istincludes) /" _ = J/

¥
/gpecifigs scope [_Jf\\ //_Gets back list mj\\ P~

efactoring and APls | |wo|at|0n3 and actions }—N\.l

__ in filter DSL _/; \Eeﬁormed as IDg_S'/‘ -

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 24

CONCLUSIONS

Automated code refactoring technically Feasible

Possible when there's a deterministic rule for
replacing matched pattern

Notes of warning

Always test code refactoring before unleashing
into the wild

Scale needs to be sufficiently big to achieve ROI

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024

Company Confidential © Capgemini 2022. All rights reserved | 25

DO WE STILL HAVE TIME?

GIVE ME MORE! __
R 0 o

— B w

2

@emegen.com

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 26

ARCHITECTURE ANALYSIS WITH RENAISSANCE

Architecture Analysis

Visualize code depending on COM IDL

Report IPC events/calls between processes

Visualize cyclic dependencies

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 27

MODEL-BASED KNOWLEDGE EXTRACTION & ANALYSIS

Architectural dependency views

« Extensible to support technology mixture
« Customizable to answer analysis question Architectural structure views

=] A_SO

* Performant to handle large-scale code base
e.g. yEd

4

{ Source code

Filesystem C++
Extractor /' Extractor
| i Merge l ©) Query
Build _ <MyGPL> | -
Extractor . Extractor | —
Discovery with off-the Graph
shelf language parsers library

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 28

DEMO: MODEL-BASED ANALYSIS USING REBORN

Folder dependencies view

1. Extract code and publish to Knowledge Base
2. Extract project information and refine Knowledge Base
3. Generate views
4. View generated views in YEd
' Source code
Filesystem C++
Extractor /' Extractor
i Merge | oo B Query
Project | Python | b Kno.
Extractor . Extractor | e
Discovery with off-the Graph
shelf language parsers library

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 29

KEY TAKE AWAY

Keep your software forever young by
automating software maintenance!

L=
any questions;
.

L
efficiently rejuvenate a software*cod

H@®@

This presentation contains information that may be privileged or confidential and
is the property of the Capgemini Group.

Copyright © 2022 Capgemini. All rights reserved.

About Capgemini Engineering

Capgemini Engineering combines, under one brand, a unique set of strengths from across the
Capgemini Group: the world leading engineering and R&D services of Altran — acquired by
Capgemini in 2020 - and Capgemini's digital manufacturing expertise. With broad industry
knowledge and cutting-edge technologies in digital and software, Capgemini Engineering
supports the convergence of the physical and digital worlds. Combined with the capabilities of
the rest of the Group, it helps clients to accelerate their journey towards Intelligent Industry.
Capgemini Engineering has more than 52,000 engineer and scientist team members in over 30
countries across sectors including aeronautics, automotive, railways, communications, energy,
life sciences, semiconductors, software & internet, space & defense, and consumer products.

Capgemini Engineering is an integral part of the Capgemini Group, a global leader in
partnering with companies to transform and manage their business by harnessing the power
of technology. The Group is guided everyday by its purpose of unleashing human energy
through technology for an inclusive and sustainable future. It is a responsible and diverse
organization of over 325,000 team members more than 50 countries. With its strong 55-year
heritage and deep industry expertise, Capgemini is trusted by its clients to address the entire
breadth of their business needs, from strategy and design to operations, fueled by the fast
evolving and innovative world of cloud, data, Al, connectivity, software, digital engineering
and platforms. The Group reported in 2021 global revenues of €18 billion.

Get the Future You Want |

http://www.facebook.com/capgemini
http://www.linkedin.com/company/capgemini
http://www.slideshare.net/capgemini
http://www.twitter.com/capgemini
http://www.youtube.com/capgeminimedia

	Slide 1
	Slide 2: Niels Brouwers – Solution architect
	Slide 3: WHY?
	Slide 4
	Slide 5: Legacy SW?
	Slide 6: HOW LEGACY SOFTWARE (INEVITABLY?) IS CREATED OVER TIME
	Slide 7: HOW?
	Slide 8: SOLUTION: AUTOMATE SOFTWARE MAINTENANCE …
	Slide 9: … CONTROLLED & RISK-FREE WHEN INTEGRATED INTO CI/CD ...
	Slide 10: … FOLLOWING AN AUTOMATED AND CONTINUOUS PROCESS …
	Slide 11
	Slide 12
	Slide 13: WHAT?
	Slide 14: code refactoring at scale, RIGOUROUS and DETERMINISTIC
	Slide 15: Demo: automated code refactoring using reborn
	Slide 16: SOME EXAMPLES OF AUTOMATED SOFTWARE MAINTENANCE
	Slide 17: MIGRATION OF TEST SUITES FROM BOOST.TEST to GOOGLE TEST
	Slide 18: MIGRATION OF TEST SUITES FROM PROPRIETARY to GOOGLE TEST
	Slide 19: MIGRATION OF TEST SUITES FROM PROPRIETARY to GOOGLE TEST
	Slide 20: SOLVING CODE DEFECTS & SMELLS
	Slide 21: REMOVAL OF OBSOLETE CODE
	Slide 22: REMOVAL OF OBSOLETE CODE
	Slide 23: REMOVAL OF OBSOLETE CODE
	Slide 24: MAKE Source files self-contained
	Slide 25: CONCLUSIONS
	Slide 26: DO WE STILL HAVE TIME?
	Slide 27: ARCHITECTURE ANALYSIS WITH RENAISSANCE
	Slide 28: Model-based knowledge extraction & analysis
	Slide 29: Demo: model-based analysis using reborn
	Slide 30: Key take away
	Slide 31
	Slide 32: About Capgemini Engineering

