
HOW TO
CONTINUOUSLY
AND EFFICIENTLY
REJUVENATE A
SOFTWARE CODE
BASE?

May 16th, 2024 | 040coders | Niels Brouwers

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 2

NIELS BROUWERS – SOLUTION ARCHITECT

• Accelerate software development

• Increasing the level of abstraction

• Intensifying the level of automation

• Model-driven engineering (MDE)

• Automated software rejuvenation

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 3

WHY?
… The need for more efficient code rejuvenation?

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 4

Who has some understanding of what legacy SW is?

Who is working on legacy SW?

Who likes working on legacy SW?

Who wants to get rid of legacy SW?

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 5

LEGACY SW?

30M
Modern Copier

0
145K
Moon lander

25 M
F35 Fighter Jet

1000M
Autonomous Car

100M
Luxury car

10 M
Modern X-ray

Outdated technologies

Deteriorated software quality

Lack of knowledge

Dead and obsolete code

New SW

Existing SW

“Software that notably resists modification or evolution”

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 6

HOW LEGACY SOFTWARE (INEVITABLY?) IS CREATED OVER TIME

More
Advanced

More
Software

More
Maintenance

Lower
Velocity

Higher
Technical

Debt

Each full-time developer can maintain “only” 50KLoc1

Many companies don’t have “luxury” to spend 200
FTE to maintain a 10 MLoC code base

Prevent legacy SW by performing

maintenance more efficiently!

1 Wayne Lobb e.a “Software Development and Maintenance Effort/Cost Models”, Foilage
whitepaper

Accumulation of technical debt, to the point where software resists being modified

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 7

HOW?
… To effectively rejuvenate a code base?!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 8

SOLUTION: AUTOMATE SOFTWARE MAINTENANCE …

before {

 boost::foo($arg1, $arg2, $$args);

} after { // Optional

 std::foo($arg2, $arg1, true, $$args);

}

<file>.cpp

AST

<file>.cpp*

Read

Query &

Rewrite

Software Maintenance Tasks

Solve architecture
or code issues

Improve code
readability

Remove obsolete
and dead code

Migrate to
improved API

Replacement of code patterns, automatable!

generalize

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 9

… CONTROLLED & RISK-FREE WHEN INTEGRATED INTO CI/CD ...

Develop
Build &

Test

Review

PR
Accept Release

Dev

Development CI/CD

Refactor Bot

Refactor

Refactor

Portfolio

Rejuvenation

Dev

Specify

Refactoring

before {

 boost::api_func($arg1, $arg2, $$args);

} after { // Optional

 std::api_func($arg2, $arg1, true, $$args);

}-

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 10

… FOLLOWING AN AUTOMATED AND CONTINUOUS PROCESS …

3. Refactor

“Do it”

before {

 boost::api_func($arg1, $arg2, $$args);

} after { // Optional

 std::api_func($arg2, $arg1, true, $$args)

}-

1. Analyze

“Where?”

2. Monitor & Plan

“When?”

4. Prevent

“No more!”

?!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 11

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 12

… ENABLED BY R.E.B.O.R.N.

Quality Guarding

“Prevent!”
R-Actions

“Here it is!”
Reporting

“When?”
Analysis

“Where?”

▪ Extractors (code, project, architecture)

▪ CI/CD Integrated
▪ Centralized in Graph Database

Software Intelligence

Powered by: Supporting:

?! before {

 boost::api_func($arg1, $arg2, $$args);

} after { // Optional

 std::api_func($arg2, $arg1, true, $$args)

}-

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 13

WHAT?
… is happening under the hood,

and show me some use cases, please!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 14

CODE REFACTORING AT SCALE, RIGOUROUS AND DETERMINISTIC

Transformations to improve quality and migrate technologies

before {

 boost::api_func($arg1, $arg2, $$args);

} after { // Optional

 std::api_func($arg2, $arg1, true, $$args)

}

<file>.cpp

AST

<file>.cpp*

Read

Query &

Rewrite

2

ASTFinder.findAll(atu, IASTFunctionCallExpression.class)

 .stream()

 .map(IASTFunctionCallExpression::getFunctionNameExpression)

.filter(e->"boost::api_func".equals(e.toString()))

 .forEach(e->rewrite.replace(e, "std::api_func"));

3

replaceName("FunctionCallExpression",

"boost::api_func"," std::api_func");
1

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 15

DEMO: AUTOMATED CODE REFACTORING USING REBORN

Download
REBORN

Clone Target
Repository

Execute Code
Refactor DSL

Create Branch
& Pull Request

before {

 boost::api_func($arg1, $arg2, $$args);

} after { // Optional

 std::api_func($arg2, $arg1, true,

$$args)

}
REBORN

REBORN

REBORN Refactor DSL

REBORN
Refactor
Pipeline

R-Actions
Portfolio

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 16

SOME EXAMPLES OF AUTOMATED SOFTWARE MAINTENANCE

Solving code defects & smells

Convert test-suites to GoogleTest

Removal of dead and obsolete code

Make source- & project files self-contained

…

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 17

MIGRATION OF TEST SUITES FROM BOOST.TEST TO GOOGLE TEST

• Mainly standard refactoring using the refactor DSL were used.

• Complex cases were handled by a specific method that directly manipulates the AST. For
instance:
– migrateTestClassToGoogleTest();

– removeTestMainFromProject();

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 18

MIGRATION OF TEST SUITES FROM PROPRIETARY TO GOOGLE TEST

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 19

MIGRATION OF TEST SUITES FROM PROPRIETARY TO GOOGLE TEST

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 20

SOLVING CODE DEFECTS & SMELLS

Violation code Description

6.5.2.2.a
ANSI C functions shall not be called if there is an
equivalent safer function

6.10.8.b
Only the predefined macro names __FILE__, __LINE__
and __func__ may be used.

6.7.8.c
For a struct the initializer should be {0} or all fields
should be initialized.

5.1.1.1.c
Naming convention of the include guard of an include
file named CCBB_foo.h is of format CCBB_FOO_H.

6.10.3.d Macros shouldn't end with a semicolon.

6.10.3.e Use a semicolon at the end of a function-like macro call.

Rule:

Diff:

Some violations are related
and therefore non-trivial!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 21

Iterative approach, based on investigation of 4 patterns:

1. Identify common patterns referring to obsolete constructs

2. Remove the patterns

3. Analyze new code state

4. Remove dead code

REMOVAL OF OBSOLETE CODE

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 22

REMOVAL OF OBSOLETE CODE

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 23

REMOVAL OF OBSOLETE CODE

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 24

MAKE SOURCE FILES SELF-CONTAINED

Implemented in
~600 Java LoC

Using
Renaissance +
Eclipse CDT APIs

Standard +
company specific
rules

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 25

CONCLUSIONS

Automated code refactoring technically feasible

Possible when there’s a deterministic rule for
replacing matched pattern

Notes of warning

• Always test code refactoring before unleashing
into the wild

• Scale needs to be sufficiently big to achieve ROI

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 26

DO WE STILL HAVE TIME?

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 27

ARCHITECTURE ANALYSIS WITH RENAISSANCE

Architecture Analysis

Visualize code depending on COM IDL

Report IPC events/calls between processes

Visualize cyclic dependencies

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 28

MODEL-BASED KNOWLEDGE EXTRACTION & ANALYSIS

Build

Extractor

Filesystem

Extractor

<MyGPL>

Extractor

C++

Extractor

Source code

Merge

neo4jDiscovery with off-the

shelf language parsers

Graph

library

Query

GraphML

e.g. yEd

Tailored code analysis and visualization

• Extensible to support technology mixture

• Customizable to answer analysis question

• Performant to handle large-scale code base

Architectural structure views

Architectural pattern views

Architectural dependency views

Design views

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 29

DEMO: MODEL-BASED ANALYSIS USING REBORN

1. Extract code and publish to Knowledge Base

2. Extract project information and refine Knowledge Base

3. Generate views

4. View generated views in YEd

Project

Extractor

Filesystem

Extractor

Python

Extractor

C++

Extractor

Source code

Merge

neo4jDiscovery with off-the

shelf language parsers

Graph

library

Query

GraphML

e.g. yEd

Project dependencies view

Namespaces dependencies view

Folder dependencies view

Cyclic dependencies view

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 30

KEY TAKE AWAY

Keep your software forever young by
automating software maintenance!

How to continuously and efficiently rejuvenate a software code base? | Niels Brouwers | May 2024 Company Confidential © Capgemini 2022. All rights reserved | 31

This presentation contains information that may be privileged or confidential and

is the property of the Capgemini Group.

Copyright © 2022 Capgemini. All rights reserved.

About Capgemini Engineering

Capgemini Engineering combines, under one brand, a unique set of strengths from across the
Capgemini Group: the world leading engineering and R&D services of Altran – acquired by
Capgemini in 2020 - and Capgemini’s digital manufacturing expertise. With broad industry
knowledge and cutting-edge technologies in digital and software, Capgemini Engineering
supports the convergence of the physical and digital worlds. Combined with the capabilities of
the rest of the Group, it helps clients to accelerate their journey towards Intelligent Industry.
Capgemini Engineering has more than 52,000 engineer and scientist team members in over 30
countries across sectors including aeronautics, automotive, railways, communications, energy,
life sciences, semiconductors, software & internet, space & defense, and consumer products.

Capgemini Engineering is an integral part of the Capgemini Group, a global leader in
partnering with companies to transform and manage their business by harnessing the power
of technology. The Group is guided everyday by its purpose of unleashing human energy
through technology for an inclusive and sustainable future. It is a responsible and diverse
organization of over 325,000 team members more than 50 countries. With its strong 55-year
heritage and deep industry expertise, Capgemini is trusted by its clients to address the entire
breadth of their business needs, from strategy and design to operations, fueled by the fast
evolving and innovative world of cloud, data, AI, connectivity, software, digital engineering
and platforms. The Group reported in 2021 global revenues of €18 billion.

Get the Future You Want | www.capgemini.com/capgemini-engineering

http://www.facebook.com/capgemini
http://www.linkedin.com/company/capgemini
http://www.slideshare.net/capgemini
http://www.twitter.com/capgemini
http://www.youtube.com/capgeminimedia

	Slide 1
	Slide 2: Niels Brouwers – Solution architect
	Slide 3: WHY?
	Slide 4
	Slide 5: Legacy SW?
	Slide 6: HOW LEGACY SOFTWARE (INEVITABLY?) IS CREATED OVER TIME
	Slide 7: HOW?
	Slide 8: SOLUTION: AUTOMATE SOFTWARE MAINTENANCE …
	Slide 9: … CONTROLLED & RISK-FREE WHEN INTEGRATED INTO CI/CD ...
	Slide 10: … FOLLOWING AN AUTOMATED AND CONTINUOUS PROCESS …
	Slide 11
	Slide 12
	Slide 13: WHAT?
	Slide 14: code refactoring at scale, RIGOUROUS and DETERMINISTIC
	Slide 15: Demo: automated code refactoring using reborn
	Slide 16: SOME EXAMPLES OF AUTOMATED SOFTWARE MAINTENANCE
	Slide 17: MIGRATION OF TEST SUITES FROM BOOST.TEST to GOOGLE TEST
	Slide 18: MIGRATION OF TEST SUITES FROM PROPRIETARY to GOOGLE TEST
	Slide 19: MIGRATION OF TEST SUITES FROM PROPRIETARY to GOOGLE TEST
	Slide 20: SOLVING CODE DEFECTS & SMELLS
	Slide 21: REMOVAL OF OBSOLETE CODE
	Slide 22: REMOVAL OF OBSOLETE CODE
	Slide 23: REMOVAL OF OBSOLETE CODE
	Slide 24: MAKE Source files self-contained
	Slide 25: CONCLUSIONS
	Slide 26: DO WE STILL HAVE TIME?
	Slide 27: ARCHITECTURE ANALYSIS WITH RENAISSANCE
	Slide 28: Model-based knowledge extraction & analysis
	Slide 29: Demo: model-based analysis using reborn
	Slide 30: Key take away
	Slide 31
	Slide 32: About Capgemini Engineering

