
CONCRETE SYNTAX PATTERNS
Piërre van de Laar | TMC, HTC 96 Eindhoven



18 05 2024Concrete Syntax Patterns2

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns3

• Industrial innovator researching evolving product families

• Passionate about architecture, design, and code quality

• Wants to help the young software community to move from green field to brown field development

PIËRRE VAN DE LAAR

18 05 2024



ESI AT A GLANCE

4

SYNOPSIS

• Foundation ESI started in 2002

• ESI acquired by TNO per 

January 2013

• ~60 staff members many with 

extensive industrial experience

• 8 Part-time professors

• Working at industry locations

• From embedded systems 

innovation to embedding 

innovation

FOCUS

Managing complexity of 
high-tech systems 

through 
• system architecting
• system reasoning and 
• model-driven engineering

delivering
• methodologies validated in 

cutting-edge industrial 
practice

PARTNER BOARD

18 05 2024 Concrete Syntax Patterns



18 05 2024Concrete Syntax Patterns5

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns6

Including

• Read code

• Search for piece of code

• Data flow

• Call graph

• Inheritance tree

ANALYSIS OF CODE

18 05 2024



WHO HAS NEVER ANALYZED CODE?

Concrete Syntax Patterns7 18 05 2024

1

Please raise hand



Concrete Syntax Patterns8

CHANGE CODE

18 05 2024

Including

• Rename variable or function

• Solve a bug

• Handle missed corner case

• Improve structure

• Improve quality

• Prepare for new feature

• Add new feature



WHO HAS NEVER CHANGED CODE?

Concrete Syntax Patterns9 18 05 2024

2

Please raise hand



Concrete Syntax Patterns10

UNDERSTAND CODE

18 05 2024

The variable max is set to maximum value of the 
variables x and y

The function f is called

• The first argument is a

• The third argument is b

• The second argument is 
 0 when a plus b is larger than 10 and 

1 otherwise



WHO COULD NOT UNDERSTAND CODE?

Concrete Syntax Patterns11 18 05 2024

3

Please raise hand



Concrete Syntax Patterns12

FIND

18 05 2024

abc

def

ABC

DEF

Identical

Equivalent



Concrete Syntax Patterns13

FIND

18 05 2024

Hello World!

Hoollo Eindhoven

Hallo 040coders



WHO COULD NOT PREDICT FIND RESULTS?

Concrete Syntax Patterns14 18 05 2024

4

Please raise hand



Concrete Syntax Patterns15 18 05 2024



18 05 2024Concrete Syntax Patterns16

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns17

• Find

• Match

• Text-based search is sensitive to white spaces and comments

CODE IS NOT TEXT

18 05 2024



Concrete Syntax Patterns18

REGULAR EXPRESSIONS CANNOT HANDLE CODE

18 05 2024

• Code is data with clear syntax and semantics

• Find size function with exactly two arguments

• Regular Expressions cannot handle arbitrary levels of nested brackets and expressions



Concrete Syntax Patterns19

Contact all stakeholders by email before changing an interface

• Software developers can develop software tools

• Database contains relation between code owners and files

• IDE offers call graph of a single function

• Integration & extension is hard

TOOLS CANNOT BE INTEGRATED OR EXTENDED

18 05 2024



Concrete Syntax Patterns20

• Powerful tools, like linter and compiler, parse code

• Development and maintenance of a parser is huge effort

• Industrial quality C++ compiler at least 2 years

• CDT parser of Eclipse will not support C++ 20 and beyond

• Parser represents code as Abstract Syntax Tree (AST)

• Abstract Syntax Tree not developed for analysis and change but for high performance

LEARNING CURVE FOR TOOLS

18 05 2024



Concrete Syntax Patterns21

Hello World

in Python (ANTLR grammar)

in C++ (CDT)

Complicated!

Too steep learning curve 

Especially for occasional usage

ABSTRACT SYNTAX TREE

18 05 2024



Concrete Syntax Patterns22

• Inappropriate tools

• Code isn’t text, regular expressions cannot handle code

• Tools are hard to integrate and extend

• Lack of API

• Too steep learning curve

• AST is complicated

LIMITATIONS OF CURRENT TOOLS

18 05 2024



18 05 2024Concrete Syntax Patterns23

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns24

• All coders can read code

• All coders know the concrete syntax

• Not all coders know the abstract syntax

ABSTRACT VS CONCRETE SYNTAX

18 05 2024



Concrete Syntax Patterns25

EQUIVALENT SUBTREES

18 05 2024

(CPPASTExpressionStatement, [21,29])
  (CPPASTFunctionCallExpression, [21,28])
    (CPPASTIdExpression, [21,26])
      (CPPASTName, [21,26]): |ready|
(CPPASTExpressionStatement, [34,40])
  (CPPASTFunctionCallExpression, [34,39])
    (CPPASTIdExpression, [34,37])
      (CPPASTName, [34,37]): |set|
(CPPASTExpressionStatement, [45,50])
  (CPPASTFunctionCallExpression, [45,49])
    (CPPASTIdExpression, [45,47])
      (CPPASTName, [45,47]): |go|

(CPPASTExpressionStatement, [56,65])
  (CPPASTFunctionCallExpression, [56,64])
    (CPPASTIdExpression, [56,61])
      (CPPASTName, [56,61]): |ready|
(CPPASTExpressionStatement, [70,77])
  (CPPASTFunctionCallExpression, [70,76])
    (CPPASTIdExpression, [70,73])
      (CPPASTName, [70,73]): |set|
(CPPASTExpressionStatement, [82,88])
  (CPPASTFunctionCallExpression, [82,87])
    (CPPASTIdExpression, [82,84])
      (CPPASTName, [82,84]): |go|

(CPPASTExpressionStatement, [94,102])
  (CPPASTFunctionCallExpression, [94,101])
    (CPPASTIdExpression, [94,99])
      (CPPASTName, [94,99]): |ready|
(CPPASTExpressionStatement, [140,146])
  (CPPASTFunctionCallExpression, [140,145])
    (CPPASTIdExpression, [140,143])
      (CPPASTName, [140,143]): |set|
(CPPASTExpressionStatement, [190,195])
  (CPPASTFunctionCallExpression, [190,194])
    (CPPASTIdExpression, [190,192])
      (CPPASTName, [190,192]): |go|



Concrete Syntax Patterns26

EQUIVALENT SUBTREES

18 05 2024

(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |set|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |go|

(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |set|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |go|

(CPPASTExpressionStatement, [      ])
  (CPPASTFunctionCallExpression, [      ])
    (CPPASTIdExpression, [    ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [       ])
  (CPPASTFunctionCallExpression, [       ])
    (CPPASTIdExpression, [       ])
      (CPPASTName, [       ]): |set|
(CPPASTExpressionStatement, [       ])
  (CPPASTFunctionCallExpression, [       ])
    (CPPASTIdExpression, [       ])
      (CPPASTName, [       ]): |go|



Concrete Syntax Patterns27

• Find instances of a pattern within the code

• Parser represents code as Abstract Syntax Tree

• An instance is a subtree: a piece of that Abstract Syntax Tree

• All instances of a pattern have equivalent subtrees

• Use standard tree matching 

• Yet, do not expose the AST to the user!

HOW TO ANALYZE AND CHANGE CODE?

18 05 2024



Concrete Syntax Patterns28

• Without exposing the AST to the user

• Use the parser!

• Limited kinds of patterns

• Statement(s)

• Declaration(s)

• Expression

• Parsers are not designed for concrete syntax patterns, yet!

HOW TO GET THE AST OF A PATTERN?

18 05 2024

USE
THE PARSER,

LUKE



Concrete Syntax Patterns29

• Make small program around pattern for parser

• Extract relevant subtree from AST for pattern

HOW TO EASILY GET THE SUBTREE OF A PATTERN?

18 05 2024

(CPPASTTranslationUnit, [0,22]): |void main() { ... }|
(CPPASTFunctionDefinition, [0,22]): |void main() { ... }|
(CPPASTSimpleDeclSpecifier, [0,4]): |void|
(CPPASTFunctionDeclarator, [5,11]): |main()|
(CPPASTName, [5,9]): |main|
(CPPASTCompoundStatement, [12,22]): |{ ... }|

(CPPASTTranslationUnit, [0,18]): |int dummy = (...);|
(CPPASTSimpleDeclaration, [0,18]): |int dummy = (...);|
(CPPASTSimpleDeclSpecifier, [0,3]): |int|
(CPPASTDeclarator, [4,17]): |dummy = (...)|
(CPPASTName, [4,9]): |dummy|
(CPPASTEqualsInitializer, [10,17]): |= (...)|
(CPPASTUnaryExpression, [12,17]): |(...)|



Concrete Syntax Patterns30

• Match any AST node

• Single statement, single expression, function name, …

• Comparable to . the wildcard of regular expressions

• $name in C++, $S_name in Ada, …

• Match list of AST Nodes

• List of arguments, list of parameters, list of initial values, list of enumeration values, list of statements, …

• Comparable to .* wildcard with Kleene star of regular expressions

• $$name in C++, $M_name in Ada, …

EXTRA INGREDIENT: PLACEHOLDERS

18 05 2024



Concrete Syntax Patterns31

• Enable developer to focus on analysis and change

• Steps on complete code base

– Gather information, combine knowledge, simplify, …

• Actions within step

– Find, apply, replace, filter, …

REJUVENATION LIBRARY

18 05 2024

• Fluent interface supports developer

• Works on code, yet hides AST representation

– Uses Concrete Syntax Patterns

• Extendable

– Integrates in any program

• Ensures the same code is analyzed as is built

– Same include paths, same defines

• Ensures changes are formatted

– Same pretty printer, same configuration settings

• Ensures high performance

– Parallelizes analysis and change



18 05 2024Concrete Syntax Patterns32

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns33

• What C++ code matches this C++ pattern                                                                                       ? 

C++ CODE EXAMPLE

18 05 2024



Concrete Syntax Patterns34

• What code matches this pattern                                                                         ? 

• What code matches this pattern                                                                           ? 

PLACEHOLDER FOR SINGLE NODE

18 05 2024



Concrete Syntax Patterns35

• What code matches this pattern                                                                                  ? 

PLACEHOLDER FOR SINGLE NODE

18 05 2024



Concrete Syntax Patterns36

• What code matches this pattern                                                                                         ? 

PLACEHOLDER FOR LIST OF NODES

18 05 2024



Concrete Syntax Patterns38

• What code matches this pattern                                                                                               ?

• Reoccurrence of a placeholder adds a constraint

• All occurrences of a placeholder must be equivalent.

MULTIPLE OCCURRENCES OF PLACEHOLDERS

18 05 2024



18 05 2024Concrete Syntax Patterns39

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns40

• Find

• Apply 

• Apply

• Apply 

FIND & APPLY

18 05 2024



Concrete Syntax Patterns41

• Find, filter, and apply

• Use filter for additional checks

• Anything is possible

• Typically, check on placeholders

FILTER

18 05 2024



18 05 2024Concrete Syntax Patterns42

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns43

• Find                                                                                              and replace with  

FIND & REPLACE

18 05 2024

depends on 
configuration



Concrete Syntax Patterns44

• Find                                                                             and replace with 

FIND & REPLACE

18 05 2024

Back reference 

Need for post-processing



Concrete Syntax Patterns45

• Find, filter, and replace

• Use filter to prevent incorrect changes from happening

FILTER (1/2)

18 05 2024



Concrete Syntax Patterns46

• Is finding the pattern

and replacing by

correct?

• No – One reason

Execution order is changed

is no longer executed first

and this might result in different behavior

• Hopefully at least one test case will fail!

TEST YOUR CHANGES! (1/3)

18 05 2024



Concrete Syntax Patterns48

• Is finding the pattern

and replacing by

correct?

• No – One reason

Introduction of variable shadows 

variable with same name when present

• Compiler will warn for hiding names by shadowing variables

TEST YOUR CHANGES! (2/3)

18 05 2024



Concrete Syntax Patterns49

• Both replacements are wrong for overloaded functions

• Compiler will not warn when the relevant conversion functions exist!

TEST YOUR CHANGES! (3/3)

18 05 2024



Concrete Syntax Patterns50

• Find, filter, and replace

• Use filter to prevent incorrect changes from happening

• Library of standard filter functions

• Side effect of placeholder?

• Interaction between placeholders?

• Hide variable?

• Same definition?

FILTER (2/2)

18 05 2024



18 05 2024Concrete Syntax Patterns51

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



SUMMARY

• 040coders analyze and change software

• Existing tooling is limited

• Tools are inappropriate for code, tools cannot be integrated, tools have steep learning curve

• Rejuvenation library overcomes limitations

• Concrete Syntax Patterns

MAY THE
PARSER
BE WITH

YOU!
52 Concrete Syntax Patterns 18 05 2024




	Introduction
	Slide 1: Concrete Syntax Patterns
	Slide 2: Agenda
	Slide 3: Piërre van de Laar
	Slide 4: ESI at a glance

	Questionnaire
	Slide 5: Agenda
	Slide 6: Analysis of code
	Slide 7: Who has never analyzed code?
	Slide 8: Change code
	Slide 9: Who has never Changed code?
	Slide 10: Understand code
	Slide 11: Who could NOT UNDERSTAND CODE?
	Slide 12: Find
	Slide 13: Find
	Slide 14: Who could NOT PREDICT FIND Results?
	Slide 15

	Limitations
	Slide 16: Agenda
	Slide 17: Code IS NOT TEXT
	Slide 18: Regular Expressions CANNOT HANDLE CODE
	Slide 19: Tools CANNOT BE Integrated or extended
	Slide 20: Learning Curve for Tools
	Slide 21: Abstract Syntax Tree
	Slide 22: Limitations of current Tools 

	Concrete Syntax Patterns
	Slide 23: Agenda
	Slide 24: Abstract vs Concrete Syntax
	Slide 25: Equivalent Subtrees
	Slide 26: Equivalent Subtrees
	Slide 27: How to ANALYZE AND Change code?
	Slide 28: How to GET THE AST of a PATTERN?
	Slide 29: How to easily get the subtree of A pattern? 
	Slide 30: EXTRA Ingredient: Placeholders
	Slide 31: Rejuvenation Library

	Learn By Examples
	Slide 32: Agenda
	Slide 33: C++ Code Example
	Slide 34: Placeholder for Single Node
	Slide 35: Placeholder for Single Node
	Slide 36: Placeholder for List of Nodes
	Slide 38: Multiple Occurrences of Placeholders

	Analysis: Find and Apply
	Slide 39: Agenda
	Slide 40: Find & Apply
	Slide 41: Filter

	Change: Find and Replace
	Slide 42: Agenda
	Slide 43: Find & Replace
	Slide 44: Find & Replace
	Slide 45: Filter (1/2)
	Slide 46: Test your CHANGES!  (1/3)
	Slide 48: Test your CHANGES!  (2/3)
	Slide 49: Test your CHANGES!  (3/3)
	Slide 50: Filter (2/2)

	Summary
	Slide 51: Agenda
	Slide 52: Summary
	Slide 53


