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• Industrial innovator researching evolving product families

• Passionate about architecture, design, and code quality

• Wants to help the young software community to move from green field to brown field development

PIËRRE VAN DE LAAR
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ESI AT A GLANCE

4

SYNOPSIS

• Foundation ESI started in 2002

• ESI acquired by TNO per 

January 2013

• ~60 staff members many with 

extensive industrial experience

• 8 Part-time professors

• Working at industry locations

• From embedded systems 

innovation to embedding 

innovation

FOCUS

Managing complexity of 
high-tech systems 

through 
• system architecting
• system reasoning and 
• model-driven engineering

delivering
• methodologies validated in 

cutting-edge industrial 
practice

PARTNER BOARD

18 05 2024 Concrete Syntax Patterns
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Including

• Read code

• Search for piece of code

• Data flow

• Call graph

• Inheritance tree

ANALYSIS OF CODE

18 05 2024



WHO HAS NEVER ANALYZED CODE?

Concrete Syntax Patterns7 18 05 2024

1

Please raise hand



Concrete Syntax Patterns8

CHANGE CODE

18 05 2024

Including

• Rename variable or function

• Solve a bug

• Handle missed corner case

• Improve structure

• Improve quality

• Prepare for new feature

• Add new feature



WHO HAS NEVER CHANGED CODE?
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2

Please raise hand
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UNDERSTAND CODE

18 05 2024

The variable max is set to maximum value of the 
variables x and y

The function f is called

• The first argument is a

• The third argument is b

• The second argument is 
 0 when a plus b is larger than 10 and 

1 otherwise



WHO COULD NOT UNDERSTAND CODE?
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3

Please raise hand
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FIND

18 05 2024

abc

def

ABC

DEF

Identical

Equivalent
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FIND
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Hello World!

Hoollo Eindhoven

Hallo 040coders



WHO COULD NOT PREDICT FIND RESULTS?
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4

Please raise hand
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• Find

• Match

• Text-based search is sensitive to white spaces and comments

CODE IS NOT TEXT

18 05 2024
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REGULAR EXPRESSIONS CANNOT HANDLE CODE

18 05 2024

• Code is data with clear syntax and semantics

• Find size function with exactly two arguments

• Regular Expressions cannot handle arbitrary levels of nested brackets and expressions
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Contact all stakeholders by email before changing an interface

• Software developers can develop software tools

• Database contains relation between code owners and files

• IDE offers call graph of a single function

• Integration & extension is hard

TOOLS CANNOT BE INTEGRATED OR EXTENDED

18 05 2024
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• Powerful tools, like linter and compiler, parse code

• Development and maintenance of a parser is huge effort

• Industrial quality C++ compiler at least 2 years

• CDT parser of Eclipse will not support C++ 20 and beyond

• Parser represents code as Abstract Syntax Tree (AST)

• Abstract Syntax Tree not developed for analysis and change but for high performance

LEARNING CURVE FOR TOOLS

18 05 2024
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Hello World

in Python (ANTLR grammar)

in C++ (CDT)

Complicated!

Too steep learning curve 

Especially for occasional usage

ABSTRACT SYNTAX TREE

18 05 2024
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• Inappropriate tools

• Code isn’t text, regular expressions cannot handle code

• Tools are hard to integrate and extend

• Lack of API

• Too steep learning curve

• AST is complicated

LIMITATIONS OF CURRENT TOOLS

18 05 2024
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• All coders can read code

• All coders know the concrete syntax

• Not all coders know the abstract syntax

ABSTRACT VS CONCRETE SYNTAX

18 05 2024
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EQUIVALENT SUBTREES

18 05 2024

(CPPASTExpressionStatement, [21,29])
  (CPPASTFunctionCallExpression, [21,28])
    (CPPASTIdExpression, [21,26])
      (CPPASTName, [21,26]): |ready|
(CPPASTExpressionStatement, [34,40])
  (CPPASTFunctionCallExpression, [34,39])
    (CPPASTIdExpression, [34,37])
      (CPPASTName, [34,37]): |set|
(CPPASTExpressionStatement, [45,50])
  (CPPASTFunctionCallExpression, [45,49])
    (CPPASTIdExpression, [45,47])
      (CPPASTName, [45,47]): |go|

(CPPASTExpressionStatement, [56,65])
  (CPPASTFunctionCallExpression, [56,64])
    (CPPASTIdExpression, [56,61])
      (CPPASTName, [56,61]): |ready|
(CPPASTExpressionStatement, [70,77])
  (CPPASTFunctionCallExpression, [70,76])
    (CPPASTIdExpression, [70,73])
      (CPPASTName, [70,73]): |set|
(CPPASTExpressionStatement, [82,88])
  (CPPASTFunctionCallExpression, [82,87])
    (CPPASTIdExpression, [82,84])
      (CPPASTName, [82,84]): |go|

(CPPASTExpressionStatement, [94,102])
  (CPPASTFunctionCallExpression, [94,101])
    (CPPASTIdExpression, [94,99])
      (CPPASTName, [94,99]): |ready|
(CPPASTExpressionStatement, [140,146])
  (CPPASTFunctionCallExpression, [140,145])
    (CPPASTIdExpression, [140,143])
      (CPPASTName, [140,143]): |set|
(CPPASTExpressionStatement, [190,195])
  (CPPASTFunctionCallExpression, [190,194])
    (CPPASTIdExpression, [190,192])
      (CPPASTName, [190,192]): |go|
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EQUIVALENT SUBTREES

18 05 2024

(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |set|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |go|

(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |set|
(CPPASTExpressionStatement, [     ])
  (CPPASTFunctionCallExpression, [     ])
    (CPPASTIdExpression, [     ])
      (CPPASTName, [     ]): |go|

(CPPASTExpressionStatement, [      ])
  (CPPASTFunctionCallExpression, [      ])
    (CPPASTIdExpression, [    ])
      (CPPASTName, [     ]): |ready|
(CPPASTExpressionStatement, [       ])
  (CPPASTFunctionCallExpression, [       ])
    (CPPASTIdExpression, [       ])
      (CPPASTName, [       ]): |set|
(CPPASTExpressionStatement, [       ])
  (CPPASTFunctionCallExpression, [       ])
    (CPPASTIdExpression, [       ])
      (CPPASTName, [       ]): |go|
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• Find instances of a pattern within the code

• Parser represents code as Abstract Syntax Tree

• An instance is a subtree: a piece of that Abstract Syntax Tree

• All instances of a pattern have equivalent subtrees

• Use standard tree matching 

• Yet, do not expose the AST to the user!

HOW TO ANALYZE AND CHANGE CODE?

18 05 2024
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• Without exposing the AST to the user

• Use the parser!

• Limited kinds of patterns

• Statement(s)

• Declaration(s)

• Expression

• Parsers are not designed for concrete syntax patterns, yet!

HOW TO GET THE AST OF A PATTERN?

18 05 2024

USE
THE PARSER,

LUKE
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• Make small program around pattern for parser

• Extract relevant subtree from AST for pattern

HOW TO EASILY GET THE SUBTREE OF A PATTERN?

18 05 2024

(CPPASTTranslationUnit, [0,22]): |void main() { ... }|
(CPPASTFunctionDefinition, [0,22]): |void main() { ... }|
(CPPASTSimpleDeclSpecifier, [0,4]): |void|
(CPPASTFunctionDeclarator, [5,11]): |main()|
(CPPASTName, [5,9]): |main|
(CPPASTCompoundStatement, [12,22]): |{ ... }|

(CPPASTTranslationUnit, [0,18]): |int dummy = (...);|
(CPPASTSimpleDeclaration, [0,18]): |int dummy = (...);|
(CPPASTSimpleDeclSpecifier, [0,3]): |int|
(CPPASTDeclarator, [4,17]): |dummy = (...)|
(CPPASTName, [4,9]): |dummy|
(CPPASTEqualsInitializer, [10,17]): |= (...)|
(CPPASTUnaryExpression, [12,17]): |(...)|
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• Match any AST node

• Single statement, single expression, function name, …

• Comparable to . the wildcard of regular expressions

• $name in C++, $S_name in Ada, …

• Match list of AST Nodes

• List of arguments, list of parameters, list of initial values, list of enumeration values, list of statements, …

• Comparable to .* wildcard with Kleene star of regular expressions

• $$name in C++, $M_name in Ada, …

EXTRA INGREDIENT: PLACEHOLDERS

18 05 2024
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• Enable developer to focus on analysis and change

• Steps on complete code base

– Gather information, combine knowledge, simplify, …

• Actions within step

– Find, apply, replace, filter, …

REJUVENATION LIBRARY

18 05 2024

• Fluent interface supports developer

• Works on code, yet hides AST representation

– Uses Concrete Syntax Patterns

• Extendable

– Integrates in any program

• Ensures the same code is analyzed as is built

– Same include paths, same defines

• Ensures changes are formatted

– Same pretty printer, same configuration settings

• Ensures high performance

– Parallelizes analysis and change



18 05 2024Concrete Syntax Patterns32

AGENDA

Introduction presenter & institute1

Questionnaire2

Limitations of current tools3

Concrete Syntax Patterns
Fundamental Concepts4

Concrete Syntax Patterns
Learn By Examples5

Analysis: Find, Filter, and Apply6

Change: Find, Filter, and Replace7

Summary8



Concrete Syntax Patterns33

• What C++ code matches this C++ pattern                                                                                       ? 

C++ CODE EXAMPLE

18 05 2024
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• What code matches this pattern                                                                         ? 

• What code matches this pattern                                                                           ? 

PLACEHOLDER FOR SINGLE NODE

18 05 2024
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• What code matches this pattern                                                                                  ? 

PLACEHOLDER FOR SINGLE NODE

18 05 2024
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• What code matches this pattern                                                                                         ? 

PLACEHOLDER FOR LIST OF NODES

18 05 2024
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• What code matches this pattern                                                                                               ?

• Reoccurrence of a placeholder adds a constraint

• All occurrences of a placeholder must be equivalent.

MULTIPLE OCCURRENCES OF PLACEHOLDERS

18 05 2024
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• Find

• Apply 

• Apply

• Apply 

FIND & APPLY

18 05 2024



Concrete Syntax Patterns41

• Find, filter, and apply

• Use filter for additional checks

• Anything is possible

• Typically, check on placeholders

FILTER

18 05 2024
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• Find                                                                                              and replace with  

FIND & REPLACE

18 05 2024

depends on 
configuration
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• Find                                                                             and replace with 

FIND & REPLACE

18 05 2024

Back reference 

Need for post-processing
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• Find, filter, and replace

• Use filter to prevent incorrect changes from happening

FILTER (1/2)

18 05 2024
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• Is finding the pattern

and replacing by

correct?

• No – One reason

Execution order is changed

is no longer executed first

and this might result in different behavior

• Hopefully at least one test case will fail!

TEST YOUR CHANGES! (1/3)

18 05 2024
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• Is finding the pattern

and replacing by

correct?

• No – One reason

Introduction of variable shadows 

variable with same name when present

• Compiler will warn for hiding names by shadowing variables

TEST YOUR CHANGES! (2/3)

18 05 2024
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• Both replacements are wrong for overloaded functions

• Compiler will not warn when the relevant conversion functions exist!

TEST YOUR CHANGES! (3/3)

18 05 2024
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• Find, filter, and replace

• Use filter to prevent incorrect changes from happening

• Library of standard filter functions

• Side effect of placeholder?

• Interaction between placeholders?

• Hide variable?

• Same definition?

FILTER (2/2)

18 05 2024
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SUMMARY

• 040coders analyze and change software

• Existing tooling is limited

• Tools are inappropriate for code, tools cannot be integrated, tools have steep learning curve

• Rejuvenation library overcomes limitations

• Concrete Syntax Patterns

MAY THE
PARSER
BE WITH

YOU!
52 Concrete Syntax Patterns 18 05 2024
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