
Why is Ada better then

Rust

But everybody is still using C++

040coders meetup April 18, 2024 | AnSp @IMEC

1 A bit of Intro

2 History of Languages

3 Feature sets

4 The verdict

5 Crystal ball

itecequipment.com External

2021
ITEC became a
separate entity

Philips
Semiconductors

became NXP

2006

ITECore Smart
Manufacturing

2010

30+ YEARS OF REDEFINING
SEMICONDUCTOR MANUFACTURING
In 1987, “Breakthrough in Manufacturing” (BIM) was simply a new concept. Now, over 30 years later, BIM

aptly describes ITEC`s own approach to pushing the boundaries of semiconductor productivity. We develop

breakthrough technologies and build state-of-the-art equipment that enables our customer to mass-produce

semiconductor products of the highest quality.

ITEC established as the
equipment department

of Philips Semiconductors

1991

2017
NXP Standard

Products became
Nexperia

ADAT2 6"
die bonder

1992

µParset discrete
tester for final
and wafer test

2000

ADAT3 8" die
bonder/ sorter

2006 2006

µParset
power discrete tester

for final and wafer test

PHIXEL IHW post-seal
in-tape inspection

handler

2012
ADAT3 8" flip chip

2014

2016
ADAT3 XF 12"
die bonder/

sorter

2016
ADAT3 XF Tagliner

inlay
die bonder

2018
PHIXEL CMR optical

inspection for
contact(less) modules

2022
nanoParset fastest
discrete tester for

final and wafer test

2022
PHIXEL WIF post
dicing wafer AOI

2023
ADAT3 XF 12”

flip chip

itecequipment.com External

Lowest test cost for low-pin-
count semiconductors

▪ Lowest Cost of Ownership

▪ High test speed

▪ Multi-site testing

▪ Integrated digital and analog
functions

▪ Test platform consolidation and
wide test coverage

Parset Test platforms

Leading in Industry 4.0
for mass-production

▪ Full die-level traceability

▪ Big data analytics

▪ Data fusion

▪ Autonomous loops and
machine learning

Smart Manufacturing

ITEC solutions summary

Record-breaking output

▪ Lowest Cost of Ownership

▪ Process portability

▪ Thinner wafers

▪ Flip-chip iso wires

▪ Placement accuracy

▪ 360º optical inspections

▪ Predictive maintenance

▪ Versatility and flexibility

ADAT3 Assembly Platform

Unbeatable efficiency

Inspection Platforms

▪ Lowest Cost of Ownership

▪ Tailored for specific mass-
production applications

▪ Powered to drive
uncompromising Quality

▪ Integration in IT infrastructure
for traceability

itecequipment.com External

Close

itecequipment.com External

ITEC uses Ada

6

ITEC originated from the ‘Bedrijfsmechnisatie’ van Philip Semiconductors.

It is building chip assembly equipment since the 70’s.

The first automated equipment was based on RTL2 (on DEC VAX).

Both RTL2 and Ada have a Pascal like syntax.

Most of the conversion was performed automatically halfway the 90’s.

(our first entry in the source repository is from October 24, 1997)

The machine control applications runs on a standard off-the-shelf ASUS motherboard

and Windows 10 64 bits (IoT).

itecequipment.com External

History of Ada

7

• A request for a coming program language

was initiated by the DoD in 1975

• In 1979 the name ‘Ada’ was selected in honor

of Ada Lovelace

• Ada 83 was the first standard version

• Boeing used it for the B777 SW development

• Ada ‘95 was the next standard version

• AdaCore (former ACT) was formed in 1996

And is one on the leading compiler vendors

• Current ISO standard is Ada 20121 (after Ada

2005) and uses GCC as backend

• C++ started as C with classes in 1979

• Initial version (as extension to C) in 1985

• ISO Standards C++98, C++03, C++11, C++14,

C++17, C++202

• Rust started in 2006

• First official release in 2015

• Mozilla supports it since 2009

• Since 2021 there is a Rust foundation

• There is no Rust standard3 (yet)

1. https://www.adaic.org/advantages/ada-2012/

2. https://www.iso.org/obp/ui/#iso:std:iso-iec:9899:ed-4:v1:en

3. https://github.com/rust-lang/rfcs

https://www.adaic.org/advantages/ada-2012/
https://www.iso.org/obp/ui/#iso:std:iso-iec:9899:ed-4:v1:en

itecequipment.com External

Basic language stuff

8

All 3 languages are structural and meant for systems programming.

In the basic language constructs the semantics are different, but the features the same

Ada Rust C++

Basic types Character, String

Integer, Float,

Boolean, Enum

i8, string

i32, f32

char, std::string

int, float

bool, enum

Conditional if .. then .. else.. endif If .. { .. } else { .. } If (..) {..} else {..}

For loop for i in l .. u loop ..

end loop

for i in l .. u { .. } for (int i = l; i < u; i++) {}

While loop while True loop ..

end loop

while true { .. } while (true) { .. }

case n is

when 1 .. 5 => ..

end case

match n

{

1 .. 5 => ..

}

switch (n) {

case 1.. 5:

…

break;

Both Ada and Rust support strong typing with range checking

itecequipment.com External

Functions

9

Ada Rust C++

Procedure Foo

(input : Integer;

output : in out Integer)

fn Foo

(input : i32,

output : &mut i32)

void Foo

(int : input,

int : &output)

Integer function Foo

(input : integer)

fn Foo

(inout : i32) -> i32

int Foo

(int : input)

in parameter (default)

in out parameter

out parameter

By value or by reference (&)

By mutable reference (&mut)

By value (or by const reference)

By reference (&)

All languages also support passing a reference to a function as parameter.

Note 1: Constant parameters are default by Ada and Rust. Changing a parameter requires to explicit allow that.

Note 2: Ada did not allow in out parameters with functions until the 2012 standard to prevent side effects.

itecequipment.com External

Memory allocation

10

Ada Rust

Alloc / free

(allocate bytes)

Not in the language Alloc / free Alloc / free

New / delete

(allocate elements)

New is the standard

Delete trough a generic

Unchecked_Deallocation

New / Drop New / delete

Shared pointers

(allocate elements

with reference count)

GNAT compiler offers a

solution through

Storage_Pools

Box, Rc or Arc std::shared_ptr

Both Ada and Rust will do bounds checking to prevent buffer overrun

itecequipment.com External

Object Oriented

11

Ada Rust C++

How implemented Define a record with

abstract and/or tagged

Define procedures and/or

functions on the record

Define a struct

Define the methods in

an impl block for that

struct

Define a class with data

and methods

Multiple inheritance Ada has the keyword

interface for a pure

abstract interface.

Add these interfaces to an

abstract record.

Define a trait with

functions

Implement this Trait for

specific struct

Define a class with

virtual functions

Derive a new class

using this base class

Constructors If the OO record is

defined as controlled:

Initialize, Adjust, &

Finalize

Construct by initialize

all its field at once.

Deconstruct via

Dropped

Always available

itecequipment.com External

Concurrency

12

All languages support concurrency

• Threads (tasks in Ada)

• Mutex, semaphore, lock/unlock

• Events

Ada Protected Objects

• Object can only be accessed by functions

• The protected object ensures the mutually

exclusivity

• Protected Counter is

function Get return Integer;

procedure Increment;

procedure Decrement;

private

Value : Integer := 0;

end Counter;

Ada tasks

• A thread with implicit synchronization

through rendez-vous

• A task has entries

Function calls of a task

task body T is

LocalInteger : Integer := 0 ;

begin

accept put (A : in Integer) do

LocalInteger := A ;

end put ;

accept get (A : ouInteger) do

A := LocalInteger ;

end get ;

end T ;

itecequipment.com External

Ada Attributes

13

Ada has attributes to query properties or

perform actions on Ada entities

(types, objects, subprograms)

• Integer’First and ‘Last

(smallest and largest Integer)

• Character’Pos and ‘Val

(convert from/to ASCII value)

• Enum’Prev and ‘Succ

(for the previous or next enum value)

• <type>’Img to get the string representation

function String_To_Enumeration

(Str : String;

Fail : To_Enum_Type := To_Enum_Type'First;

Log_Invalid : Boolean := True)

return To_Enum_Type

is

CStr : constant String := Trim (Str, Left);

Idx : Integer := CStr'Last;

begin

Idx := Index (CStr, " ");

if Idx = 0 then

Idx := CStr'Last;

else

Idx := Idx - 1;

end if;

if not Leading_No_Case (CStr, Prefix) then

return To_Enum_Type'Value (Prefix & CStr (CStr'First .. Idx));

end if;

return To_Enum_Type'Value (CStr (CStr'First .. Idx));

exception

when others =>

if Log_Invalid then

Log_Text ("String_To_Enumeration failed; Str=" & Str & ",

Prefix=" & Prefix & ", Caller=" & Caller);

end if;

return Fail;

end String_To_Enumeration;

itecequipment.com External

Other support

14

All support:

• Generics (templates)

• Collections (arrays, vectors, maps) and iterators

• File I/O (raw and streaming)

• Binding to C libraries

• It is hard to have a C++ binding in Ada and Rust

They have binding generators, but the result is not guaranteed

The C++ Application Binary Interface (ABI) is not supported

itecequipment.com External

Invariants, SPARK, Ravenscar

15

Ada 2012 support invariants (& pre and post conditions) on types and subprograms

They can be turned on/off with the pragma Assertion_Policy

type Stack is private

with Type_Invariant => Count(Stack) >= 0;

function Sum (A, B : Number) return Number

with

Pre => A <= 0.0 and B >= 0.0,

Post => Sum'Result = A + B;

SPARK is an Ada subset based on the 2012 aspect notation which allows statistic verification.

Not in the subset are things like access types, function side effects, exception handling

The Ravenscar profile is a subset of the tasking model for use in high integrity and real-time

applications. The subset ensures full analyzability of the code.

It prohibits the use of things like dynamic properties, task entries, task termination and more.

itecequipment.com External

Tools

16

Besides the compiler, some additional tools are available to improve the code

Ada Rust C++

Syntax checker Gnat Check Clippy Lint

Static checker Code peer clang-static-analyzer

Pretty printer Gnat pp Rustfmt Clang-format

itecequipment.com External

Language summary

17

Ada was designed with critical missions in view and was later extended with ‘modern’ SW design

patterns like OO and abstract interfaces.

C++ was started as C with classes, but still lacked ‘safety’ features. Some are added (like smart

pointers) but makes things more complex, because there are various options to solve a problem.

To help developers build safer C code there a several guides (MISRA2, C++ Core guidelines1)

Ada never became a mainstream program language, and the C/C++ weak points are still there,

new languages to solve these are designed. Rust is one of them with potential and the first to be

part of the Linux kernel (next to assembly and C).

Another recognized advantage with Rust is their build system Cargo.

1. https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

2. https://misra.org.uk/

itecequipment.com External

Language summary

18

With all 3 languages you can implement probably everything you want.

And with discipline and structure safe as well.

Ada and Rust are intrinsic safer than C++, but chaos can be created in them as well.

A good application starts with a good architecture.

So why still C++?

Legacy code bases are in C/C++.

Already hard to maintain and adding another language just makes it more complex.

And it is all about the eco system (knowledge, forums, tools, libraries, people) -> the big guy wins.

Language Tiobe index Ratings

Ada 24 0.76%

C / C++ 2 / 3 =10.21% / ^9.76%

Rust 19 ^1.03%
From www.tiobe.com

itecequipment.com External

Verdict AI (Google Gemini)

19

I need to select the program language for a mechatronic production machine, which includes motion control,
vision inspections and all kind of I/O. Can you give me a comparison between C++, Rust and Ada for such a
machine control application?

itecequipment.com External

Verdict on C++

20

Pros:

• Most mature language of the three, with a vast ecosystem of libraries and tools for real-time

systems and embedded programming.

• Highly performant, offering fine-grained control over memory management.

• Extensive community support and learning resources available.

Cons:

• Manually memory management can be error-prone, leading to memory leaks and crashes if not

done carefully.

• Complex syntax can make code harder to read and maintain, especially for large projects.

• Not as safe as Rust by default, requiring stricter coding practices to avoid vulnerabilities.

itecequipment.com External

Verdict on Rust

21

Pros:

• Focuses on memory safety, preventing dangling pointers and buffer overflows that can plague

C++ programs.

• Modern language with features like pattern matching for cleaner and more concise code.

• Offers good performance and real-time capabilities.

Cons:

• Younger language with a smaller community and ecosystem compared to C++.

• Steeper learning curve due to its ownership system and borrowing concepts.

• Might have a smaller pool of developers familiar with Rust for embedded systems.

itecequipment.com External

Verdict on Ada

22

Pros:

• Designed specifically for embedded systems and real-time applications.

• Enforces strong typing and program correctness, leading to more reliable code.

• Offers features like tasking and rendezvous for coordinating concurrent processes.

Cons:

• Not as widely used as C++, potentially leading to fewer libraries and tools.

• Can be considered more verbose compared to C++ or Rust for some tasks.

• Finding developers familiar with Ada might be more challenging.

itecequipment.com External

Overall recommendation

23

• If you prioritize performance, a vast ecosystem of libraries, and a large pool of developers, C++

remains a strong choice. However, be mindful of the manual memory management challenges.

• If memory safety and code reliability are paramount, and you're willing to invest in learning a

newer language, Rust is an excellent option.

• If strong typing, real-time features, and code correctness are your primary concerns, Ada is a

solid choice, but consider the trade-off in terms of wider adoption and developer availability.

Additional considerations

• Existing codebase, consider the cost of porting to a different language

• Development team expertise

itecequipment.com External

Crystal ball

24

• C/C++ will stay, the legacy codebases are too big

• Ada probably will stay a niche market of bare metal, high integrity systems (defense, airplanes)

• Rust adaption is growing, but still far behind

• AI could be the deal breaker

• Code conversion, move the legacy code base more effective to another language

• Code generation

• Still requires a good architecture and design

• Need to be able to write the right requirements (pre & post conditions, invariants, formal or plain text)

• Or just start with generating empty functions based on a specified interface, UML diagram, …

itecequipment.com External

Code generation

25

Can you make a Histogram function on an image.

Pre condition I = Image (1 .. W, 1.. H)

Invariant P(k) = n(k)/N

Where l = 2 ^ q and q number of bits per pixel

n(k) is the number of pixels in image with intensity k

N = W * H, the total number of pixels in image

Post condition return P (0 .. 255)

with Ada.Numerics.Discrete_Random;

function Histogram (I : Image) return Histogram_Array is

W : constant Positive := I'Length (1);

H : constant Positive := I'Length (2);

N : constant Natural := W * H;

P : Histogram_Array := (others => 0.0);

begin

for X in I'Range (1) loop

for Y in I'Range (2) loop

declare

Intensity : constant Natural := Natural (I (X, Y));

begin

P (Intensity) := P (Intensity) + 1.0 / Natural (N);

end;

end loop;

end loop;

return P;

end Histogram;

https://www.codeconvert.ai/free-code-generator

itecequipment.com External

Code conversion Adat -> Rust

26

https://www.codeconvert.ai/free-converter

itecequipment.com External

Code conversion Adat -> C++

27

https://www.codeconvert.ai/free-converter

itecequipment.com External

Generate a state machine (in Rust)

28

https://gemini.google.com/app

	Slide 1: Why is Ada better then Rust
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: ITEC uses Ada
	Slide 7: History of Ada
	Slide 8: Basic language stuff
	Slide 9: Functions
	Slide 10: Memory allocation
	Slide 11: Object Oriented
	Slide 12: Concurrency
	Slide 13: Ada Attributes
	Slide 14: Other support
	Slide 15: Invariants, SPARK, Ravenscar
	Slide 16: Tools
	Slide 17: Language summary
	Slide 18: Language summary
	Slide 19: Verdict AI (Google Gemini)
	Slide 20: Verdict on C++
	Slide 21: Verdict on Rust
	Slide 22: Verdict on Ada
	Slide 23: Overall recommendation
	Slide 24: Crystal ball
	Slide 25: Code generation
	Slide 26: Code conversion Adat -> Rust
	Slide 27: Code conversion Adat -> C++
	Slide 28: Generate a state machine (in Rust)
	Slide 29

