Distributed software builds l
using the REv2 protocol

Ed Schouten <ed@nuxi.nl>
040coders.nl meetup, June 18th, 2020

Timeline (1/4)

e ~2000: Google has a monorepo with shell script/Makefile build scripts.
o Itturns out that becomes unmaintainable relatively quickly.
e ~2005: Makefiles are replaced with build tool written in Python.

o Every ‘package’ (directory) contains a BUILD file that is eval()ed by Python.
o Directives are Python function calls that are implemented by the build tool.

cc_library(cc_binary/(
name = “stringformatter”, name = “hello”,
srcs = [“stringformatter.c”], srcs = [“hello.c”],
hdrs = [“stringformatter.h”], deps = [“:stringformatter”],

Timeline (2/4)

e ~2010: Blaze: rewrite of Python build tool in Java.

o Contains a very basic Python interpreter to parse BUILD files.
java_x* (), cc_x(),py_x*(),etc. rules are all implemented inside Blaze in Java.
Sandboxing: actions only ‘see’ files that are part of theirdeps = [...].
Remote caching/execution: ‘bazel -j 1000’ from behind your desk.

o O O

Google office Google data center

.

Timeline (3/4)

e 2015: Bazel: tidied up Open Source version of Blaze.
o Not extensible: mainly just java_x (), cc_x() and py_x () rules.
o No remote execution: existing version was too Google specific.

e 2015-2020: Many new features appear.
o Support for platforms other than Linux/x86, and a good notion of cross compilation.
o Starlark: use a Python-like language to design your own build rules.
o Support for fetching and source code and build rules remotely (HTTP, Git, etc.).

rust_library = rule(def _rust_Tlibrary_impl(ctx):
_rust_Llibrary_1impl, ctx.actions.run(“rustc”, ...)
attrs = { return [DefaultInfo(...)]

“srcs”: attr.label_list(),
“deps”: attr.label_1list(),

1)

Timeline (4/4)

e Bazel gains support for remote caching and execution.
o 2017: Initial ‘RE’ protocol was designed by Google.
o 2018: Community efforts later on led to the release of ‘REv2’.

e Open Source servers that implement RE/REv2 start to appear:
o 2017: Uber releases Bazel Buildfarm server, written in Java.

o 2018: Bloomberg/CodeThink release BuildGrid, written in Python.
o 2018: | started working on Buildbarn, written in Go.

e Other clients that use REv2 start to appear: Recc, Goma, BuildStream, etc.

Goal of this talk: to explain how REv2 works.
Approach: start simplified (and incorrect) and extend onwards.

‘distcc/ccache/... did this two decades ago’

e ..exceptthatit only works for C/C++ compilation.
o REv2 supports remote execution of arbitrary UNIX commands.
e .. except that it requires that workers have toolchains/SDKs preloaded.
o REv2 allows clients to upload full SDKs to workers.
o Workers can be vanilla OS installations.
o Result: easier to achieve reproducibility of work.
e .. exceptthat it only speeds up builds.
o REv2 can also be used to run unit/integration tests remotely and cache results.

REv2 is not a fad!
It is becoming the de facto standard for remote builds.

REv2

Remote Execution... simplified

1. Call Execute(ExecuteRequest)

>
Bazel Build cluster

2. Receive ExecuteResponse

Building a project consists of hundreds/thousands of these calls. -

ExecuteRequest

ExecuteRequest

priority: int

\ 4 SymlinkNode

Action name: string

target: string

timeout: duration

do_not_cache: bool A
0.*
Y 4 0.*

Command Directory —> FileNode
arguments: []Jstring A name: string
environment_variables: [Jstring is_executable: bool
working_directory: string 0.* v contents: [Jbyte
platform: Platform _
output_paths: [Jstring DirectoryNode

name: string

ExecuteResponse

Y

ExecutedActionMetadata

LogFile 0.” ExecuteResponse
human_readable: bool cached_result: bool
contents: [Jbyte status: Status

message: string
OutputSymlink o
- \ 4
path: string < ActionResult
target: string
exit_code: int
0.* stdout_raw: [Jbyte

OutputFile

stderr_raw: [Jbyte

path: string

contents: [Jbyte

is_executable: bool

0.*

A 4

OutputDirectory

path: string

Y

1. 0..*

*

worker: string

queued_timestamp: timestamp
worker_start_timestamp: timestamp
worker_completed_timestamp: timestamp
input_fetch_start_timestamp: timestamp
input_fetch_completed_timestamp: timestamp
execution_start_timestamp: timestamp
execution_completed_timestamp: timestamp
output_upload_start_timestamp: timestamp
output_upload_completed_timestamp: timestamp

SymlinkNode
name: string
target: string
A
0.*
FileNode
£ name: string
is_executable: bool
0.* § contents: [|byte
DirectoryNode

name: string

Content Addressable Storage (CAS)

e Problem: ExecuteRequest and ExecuteResponse get big and repetitive.

o Input roots with SDKs can be hundreds of MBs in size.
o Build-edit-build cycles create nearly identical ExecuteRequests.

e Solution: place repetitive parts in shared storage.
o ExecuteRequest: Action, Command, Directory messages and file contents stored externally.
o ExecuteResponse: Tree messages and (log)file contents stored externally.
o Use content addressing: objects are identified by a Digest (i.e., SHA-256 + size).
m Automatic deduplication of identical data.
m Tamper proof Merkle tree: contents can be validated when loaded.
m Immutability of data makes caching trivial.
m (Impossible to maliciously craft cyclic directory layouts.)

Remote Execution with the CAS

1. Compute ExecuteRequest, Action,
Command and Directories messages.

\

Bazel

5. Call Execute(ExecuteRequest)

.

6. Receive ExecuteResponse

2. Call FindMissingBlobs() on Digests

Build cluster

3. Receive list of objects that are missing

4. Upload missing objects

Y

7. Download Tree messages, stdout/stderr and output files.

Note: only communication involving Bazel is shown.

Action Cache (AC)

e Problem: protocol is still expensive when actions are already cached.
o At least two round-trips: FindMissingBlobs(), zero CAS uploads, Execute().
o FindMissingBlobs() size grows linear w.r.t. input root file count.

e Solution: let the client first query the Action Cache directly.

o Key: Digest of the Action.

o Value: ActionResult.

o AC is the only part of REv2 storage that can become poisoned.

o AC size is minuscule compared to the CAS: about 1/1000th the size.

Remote Execution with the CAS & AC

2. Call GetActionResult(ActionDigest)
. . B AC
1. Compute ExecuteRequest, Action, 3. Receive ActionResult if already executed
Command and Directories messages.
v 7. Call Execute(ExecuteRequest)
Bazel Build cluster
8. Receive ExecuteResponse

4. Call FindMissingBlobs() on Digests /—\

5. Receive list of objects that are missing

A\ 4

6. Upload missing objects CAS

.

9. Download Tree messages, stdout/stderr and output files. v

Note: steps 4 to 8 are skipped in case step 3 returns success.

Bazel's ‘Builds without the Bytes'’

e Problem: Step 9 (i.e., downloading outputs) generates lots of network I/0.

(@)

(@)

Bazel downloads all intermediate artifacts (e.g., object files) from the CAS.
Can account for 98% of network |/0 for certain workloads.

e Solution: Enable ‘Builds without the Bytes' command line flags.

O

(@)

(@)

(@)

Only download outputs for top-level targets (e.g., binaries), or simply not at all.

Intermediate artifacts are handed to successive build actions by reference.
GetActionResult() and Execute() cannot return references to objects that disappear.
Requires CAS to be rock solid and big enough: losing data during builds causes them to fail.

e User experience of ‘Builds without the Bytes’ can still be improved.

O

No way to get on-demand access to CAS objects afterwards.

Remote Caching: still execute actions locally

e Problem: Full Remote Execution may not always be feasible.

o If a small number of build actions don’t work with Remote Execution yet.

o If setting up Remote Execution infrastructure requires too much maintenance.
e Solution: Let Bazel execute locally and seed the AC directly.

o CanbesetupinBUILD files on a per-target basis if needed.

o Does potentially allow users to poison the AC.
o Hint: Only allow CI systems to write into the AC. Users can still read the AC.

Remote Caching: still execute actions locally

2. Call GetActionResult(ActionDigest)

3. Receive ActionResult if already executed

1. Compute ExecuteRequest, Action,
Command and Directories messages.

v 8. Call UpdateActionResult(ActionDigest, ActionResult)

Bazel <--- 4. Execute action and create ActionResult locally.

5. Call FindMissingBlobs() on Digests /’_\

6. Receive list of objects that are missing

Y.

7. Upload missing objects CAS

Note: steps 4 to 8 are skipped in case step 3 returns success.

Topics that were presented

History of Bazel and the REv2 protocol.

The idea behind Remote Execution.

How the CAS reduces request size and pass outputs to successive actions.
How direct AC access reduces the number of round-trips.

Bazel's ‘Builds without the Bytes'.

Using a subset of REv2 to do plain remote caching.

BN

Q&A

