
Distributed software builds
using the REv2 protocol

Ed Schouten <ed@nuxi.nl>
040coders.nl meetup, June 18th, 2020

● ~2000: Google has a monorepo with shell script/Makefile build scripts.
○ It turns out that becomes unmaintainable relatively quickly.

● ~2005: Makefiles are replaced with build tool written in Python.
○ Every ‘package’ (directory) contains a BUILD file that is eval()ed by Python.
○ Directives are Python function calls that are implemented by the build tool.

Timeline (1/4)

cc_library(
 name = “stringformatter”,
 srcs = [“stringformatter.c”],
 hdrs = [“stringformatter.h”],
)

cc_binary(
 name = “hello”,
 srcs = [“hello.c”],
 deps = [“:stringformatter”],
)

● ~2010: Blaze: rewrite of Python build tool in Java.
○ Contains a very basic Python interpreter to parse BUILD files.
○ java_*(), cc_*(), py_*(), etc. rules are all implemented inside Blaze in Java.
○ Sandboxing: actions only ‘see’ files that are part of their deps = [...].
○ Remote caching/execution: ‘bazel -j 1000’ from behind your desk.

Timeline (2/4)

Timeline (3/4)

● 2015: Bazel: tidied up Open Source version of Blaze.
○ Not extensible: mainly just java_*(), cc_*() and py_*() rules.
○ No remote execution: existing version was too Google specific.

● 2015-2020: Many new features appear.
○ Support for platforms other than Linux/x86, and a good notion of cross compilation.
○ Starlark: use a Python-like language to design your own build rules.
○ Support for fetching and source code and build rules remotely (HTTP, Git, etc.).

rust_library = rule(
 _rust_library_impl,
 attrs = {
 “srcs”: attr.label_list(),
 “deps”: attr.label_list(),
 })

def _rust_library_impl(ctx):
 ctx.actions.run(“rustc”, ...)
 return [DefaultInfo(...)]

Timeline (4/4)

● Bazel gains support for remote caching and execution.
○ 2017: Initial ‘RE’ protocol was designed by Google.
○ 2018: Community efforts later on led to the release of ‘REv2’.

● Open Source servers that implement RE/REv2 start to appear:
○ 2017: Uber releases Bazel Buildfarm server, written in Java.
○ 2018: Bloomberg/CodeThink release BuildGrid, written in Python.
○ 2018: I started working on Buildbarn, written in Go.

● Other clients that use REv2 start to appear: Recc, Goma, BuildStream, etc.

Goal of this talk: to explain how REv2 works.
Approach: start simplified (and incorrect) and extend onwards.

● … except that it only works for C/C++ compilation.
○ REv2 supports remote execution of arbitrary UNIX commands.

● … except that it requires that workers have toolchains/SDKs preloaded.
○ REv2 allows clients to upload full SDKs to workers.
○ Workers can be vanilla OS installations.
○ Result: easier to achieve reproducibility of work.

● … except that it only speeds up builds.
○ REv2 can also be used to run unit/integration tests remotely and cache results.

REv2 is not a fad!
It is becoming the de facto standard for remote builds.

‘distcc/ccache/… did this two decades ago’

REv2

Remote Execution… simplified

Building a project consists of hundreds/thousands of these calls.

ExecuteRequest

ExecuteResponse

● Problem: ExecuteRequest and ExecuteResponse get big and repetitive.
○ Input roots with SDKs can be hundreds of MBs in size.
○ Build-edit-build cycles create nearly identical ExecuteRequests.

● Solution: place repetitive parts in shared storage.
○ ExecuteRequest: Action, Command, Directory messages and file contents stored externally.
○ ExecuteResponse: Tree messages and (log)file contents stored externally.
○ Use content addressing: objects are identified by a Digest (i.e., SHA-256 + size).

■ Automatic deduplication of identical data.
■ Tamper proof Merkle tree: contents can be validated when loaded.
■ Immutability of data makes caching trivial.
■ (Impossible to maliciously craft cyclic directory layouts.)

Content Addressable Storage (CAS)

Remote Execution with the CAS

Note: only communication involving Bazel is shown.

● Problem: protocol is still expensive when actions are already cached.
○ At least two round-trips: FindMissingBlobs(), zero CAS uploads, Execute().
○ FindMissingBlobs() size grows linear w.r.t. input root file count.

● Solution: let the client first query the Action Cache directly.
○ Key: Digest of the Action.
○ Value: ActionResult.
○ AC is the only part of REv2 storage that can become poisoned.
○ AC size is minuscule compared to the CAS: about 1/1000th the size.

Action Cache (AC)

Remote Execution with the CAS & AC

Note: steps 4 to 8 are skipped in case step 3 returns success.

● Problem: Step 9 (i.e., downloading outputs) generates lots of network I/O.
○ Bazel downloads all intermediate artifacts (e.g., object files) from the CAS.
○ Can account for 98% of network I/O for certain workloads.

● Solution: Enable ‘Builds without the Bytes’ command line flags.
○ Only download outputs for top-level targets (e.g., binaries), or simply not at all.
○ Intermediate artifacts are handed to successive build actions by reference.
○ GetActionResult() and Execute() cannot return references to objects that disappear.
○ Requires CAS to be rock solid and big enough: losing data during builds causes them to fail.

● User experience of ‘Builds without the Bytes’ can still be improved.
○ No way to get on-demand access to CAS objects afterwards.

Bazel’s ‘Builds without the Bytes’

● Problem: Full Remote Execution may not always be feasible.
○ If a small number of build actions don’t work with Remote Execution yet.
○ If setting up Remote Execution infrastructure requires too much maintenance.

● Solution: Let Bazel execute locally and seed the AC directly.
○ Can be set up in BUILD files on a per-target basis if needed.
○ Does potentially allow users to poison the AC.
○ Hint: Only allow CI systems to write into the AC. Users can still read the AC.

Remote Caching: still execute actions locally

Remote Caching: still execute actions locally

Note: steps 4 to 8 are skipped in case step 3 returns success.

● History of Bazel and the REv2 protocol.
● The idea behind Remote Execution.
● How the CAS reduces request size and pass outputs to successive actions.
● How direct AC access reduces the number of round-trips.
● Bazel’s ‘Builds without the Bytes’.
● Using a subset of REv2 to do plain remote caching.

Topics that were presented

Q&A

