
`

040coders.nl

LOW-END EMBEDDED SYSTEMS FOR HIGH-END PRODUCTS
INSIGHTS FROM A REAL PRODUCTS DEVELOPMENT

CAIO OLIVEIRA

`

02040coders.nl

LOW-END EMBEDDED SYSTEMS AND CODE SIZE:

GETTING BLOOD OUT OF STONE

TODAY’S STORY

`

03040coders.nl

INTRODUCTION
PART I

`

04040coders.nl

BACKGROUND

Caio Souza Oliveira (30)
Brazilian

• Profile
• Working for Enter since 2017;
• Embedded Software Engineer;
• Involved in several projects within Philips ever since;

• Education
• Master in Electrical Engineering (UFMG-Brazil);

Major: Embedded System Design
(Heterogeneous Computing);

• Bachelor in Computer Engineering (UNIFEI-Brazil);

OVER ME

• General
• Sweet spot for C/C++ and Assembly;
• Working on homebrew for retro-video games

(SNES/GB);
• Deep interest

• Quantum Computing
• Compiler Theory;
• Languages;
• Astronomy;
• Exercicing;

`

05040coders.nl

BACKGROUND

• Embedded Sofware Engineer in Philips Drachten
• Wi-Fi connected device, with rich user interface, mobile app and back-end connectivity;
• Original firmware was developed by an external partner;

• Not the best development practices;
• Not maintainable in the long run;

• Rewrite the Firmware!
• The firmware is meant to run on legacy hardware;
• It must be written in C++ and fully tested (integration + unit);
• Must be compatible with product’s ecosystem (FW+CLOUD+APP);
• Must be continuously updated over the span of several years;

PROJECT’S OVERVIEW

`

06040coders.nl

BACKGROUND

• The hardware was designed in 2016 based on an external partner’s specification. The system
is quite complex, and it can be summarized as:

• End-of-life Cypress’ 32-bit ARM Cortex-M0+ based microcontroller;
• 40.5MHz MCU, 128KB internal Flash and 16KB RAM;
• 8MB External (off-board) Flash chip for data storage;
• Multiple connectivity and multi-media components not relevant for this presentation;

HARDWARE OVERVIEW

`

07040coders.nl

BACKGROUND

• Bare Metal;
• Fully layered architecture following OOP paradigm;
• Plug-and-Play components architecture (for services and feature abstractions);
• Rich template-based UI rendering;

• Almost one hundred different screens;

• Also provides the concept of UI Controls/Views for tighter software development;
• Event-driven user-input handling;

• REST-API host;
• Provides hundreds of properties and methods to allow remote control;
• Including transactional memory manager;

• More than a dozen user-level features;
• Command Line Interface for advanced automated testing;
• Services, Infrastructure, HAL layers;
• And lots more…

SOFTWARE OVERVIEW

`

08040coders.nl

BACKGROUND

• It will not fit in 128 KB;

THE PROBLEM

`

09040coders.nl

BACKGROUND
THE PROBLEM

0
K

B
1

2
8

K
B

R
E

A
L

 F
IR

M
W

A
R

E
 S

IZ
E

 (
~

2
3

0
K

B
)

System FLASH

1
1

1
K

B

1
2

0
K

B

A
V

A
IL

A
B

L
E

 F
L

S
A

S
H

 S
IZ

E
 (

1
2

0
K

B
)

BOOTLOADER (8KB)

ID
E

A
L

 S
IZ

E
 (

8
4

K
B

)
R

E
S

E
R

R
V

E
D

`

10040coders.nl

BACKGROUND
THE PROBLEM

`

11040coders.nl

BACKGROUND

• Changing the hardware is not an option;
• We could not find a commercial/open source solution that would fit our needs;

• Even IAR has been officially contacted but they had no appropriate solution;

THE PROBLEM

`

12040coders.nl

BACKGROUND
THE SOLUTION

`

13040coders.nl

CODE BANKS
BANK SWITCHING

“Bank Switching (or code banking) is a technique where one can increase the amount of usable memory
without directly changing addressable space reachable by the microprocessor” (Wikipedia, modified)

Formally:

`

14040coders.nl

CODE BANKS
BANK SWITCHING

• Idea: use a single addressing space, and dynamically
switch code/data segments in-and-out as needed.

• Very common technique in older computer, where
addressing space would be from 10, 12 or 16-bits while
the programs were much larger than what would fit in
those address-ranges.

• Used in old computer and video games
(8080, Z80, 6502, 6809, etc.) using special hardware
registers/instructions;

• Switching floppies or changing CDs can also be
considered a type of bank switching.

BANK 0

BANK 1

BANK 2

BANK 3

NINTENDO GAME BOY CARTRIDGE MEMORY MAP
(ROM VIEW, MBC2)

0x8000

0xFFFF

0x4000

0x0000

BCR (0x3000)

Increase max. program size by 64 KB

`

15040coders.nl

CODE BANKS
IMPLEMENTATION CHALLENGES

• Cortex-M0+ has no hardware for bank switching. Software is the only option!

• Expand CPU’s addressing space…?
• No, increase the amount of usable code memory seen by the CPU instead;

• How dynamically swap code segments?
• How to properly build code segments so that:

• Data sharing among the multiple slices is allowed;
• Code sharing is possible;

• How to split the program into code banks?
• Which programming model should be used to allow code banks to be used along with any C++

program?
• How good would this solution perform?

`

15040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• What did I need:
1. Readily available bank’s storage location;

2. Non-degradable, exactable memory resource;

3. A software architecture to abstract (and somehow hide) the banking concept;
• In other words: banks must be invisible from the programmer’s and CPU perspective

4. Very low latency switching and execution

`

15040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• What did I need:
1. Readily available bank’s storage location;

2. Non-degradable, exactable memory resource;

3. A software architecture to abstract (and somehow hide) the banking concept;
• In other words: banks must be invisible from the programmer’s and CPU perspective

4. Very low latency switching and execution

`

15040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• What did I need:
1. Readily available bank’s storage location;

2. Non-degradable, exactable memory resource;

3. A software architecture to abstract (and somehow hide) the banking concept;
• In other words: banks must be invisible from the programmer’s and CPU perspective

4. Very low latency switching and execution

`

15040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• What did I need:
1. Readily available bank’s storage location;

2. Non-degradable, exactable memory resource;

3. A software architecture to abstract (and somehow hide) the banking concept;
• In other words: banks must be invisible from the programmer’s and CPU perspective

4. Very low latency switching and execution

`

15040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• What did I need:
1. Readily available bank’s storage location;

2. Non-degradable, exactable memory resource;

3. A software architecture to abstract (and somehow hide) the banking concept;
• In other words: banks must be invisible from the programmer’s and CPU perspective

4. Very low latency switching and execution

`

16040coders.nl

CODE BANKS
SIMULATING THE BEHAVIOR OF CODE BANKS

• How would it work?
1. Code Segments (AKA code banks) are stored outside

of the microcontroller’s Flash;
2. Upon request from the application, those segments

would be loaded and executed as ordinary functions:

a) It should be possible to pass arguments to it;
b) It should be possible get return values from it;

3. When the code is no longer needed, other code
segments could take its place;

• This would effectively allow the application to be
considerably bigger!
• The application should be designed differently, though.

0x1FFFF

0x00000

Code Bank 1

Load Code Bank 1
Requested by main app.

Code Bank 2

Code Bank 3

Code Bank 4

`

17040coders.nl

CODE BANKS
SOFTWARE PARTITION

• To simplify development (and
debugging) the software should be split
into two groups: bankable/non-bankable;

• General functionality (HAL, Services, User
Features) was considered non-bankable
would remain in the CPU’s internal Flash;

• Those functionalities are constantly used
throughout the entire code, and if set in a
code bank, it would require continuous bank
switching (possibly degrading performance);

0x1FFFF

0x00000

Code Bank 0 ~ 100
UI Logic &

Event Handler

Main Application:
Entry point function
HAL (Hardware Abstraction Layer)
ServicesLayer
UI Renderer
User-feature components (Business rules)
IRQs
Vendor Libraries

Code Bank 101 ~ 120
REST API handlers

Code Bank 121 ~ 122
CLI Server handler

Code Bank 123 ~ ???
Other minor components

`

18040coders.nl

CODE BANKS
SOFTWARE PARTITION

• To simplify development (and
debugging) the software should be split
into two groups: bankable/non-bankable;

• Most of the stateless logic has been
considered bankable;
• Little to no data sharing;

• UI Logic, REST API and CLI are predictable
and context-sensitive components that only
need to be executed based on user/system
generated events – good candidate to be
banked;

0x1FFFF

0x00000

Code Bank 0 ~ 100
UI Logic &

Event Handler

Main Application:
Entry point function
HAL (Hardware Abstraction Layer)
ServicesLayer
UI Renderer
User-feature components (Business rules)
IRQs
Vendor Libraries

Code Bank 101 ~ 120
REST API handlers

Code Bank 121 ~ 122
CLI Server handler

Code Bank 123 ~ ???
Other minor components

`

19040coders.nl

CODE BANKS
IMPLEMENTING THE CONCEPT IN SOFTWARE

• SPOILERS: It works!

• On the bright side:
• It provides maximum program size of 2,5MB (up to 256 different banks);
• It is mostly compatible with the existing code base, requiring minor adjustments;
• It is performant enough to be indistinguishable from code running directly from the microcontroller's

Flash;

• However,
• It took about 1.5 months of intensive work to be fully implemented and integrated;
• It requires understanding of low-level programming and Arm assembly (Thumb-2 to be more specific);
• It reduces the amount of usable RAM in the system;

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1
SPI BUS

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1
SPI BUS

2

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1

3

SPI BUS

2

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1

3

4

SPI BUS

2

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1

3

4

5

SPI BUS

2

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

20040coders.nl

CODE BANKS
SYSTEM COMPONENTS OVERVIEW

Main app.

CodeRunner
(built in mem. manager)

MCU addressing space

Data RAM

Program RAM
(paged segment)

Program Memory
(128KB)

RAM
(16KB + ~3KB for code banks)

External Flash

Code banks

CODE BANK FUNCT.

1

3

4

5
6

SPI BUS

2

E
xe

cu
ti

o
n

External Flash Chip
(8MB max. 3MB for code banks)

Foreign addressing space

Runtime
(code banks execution flow)

Annotated
source code

Pre-build

Build

Post-build

Code banks
Image

Main app.
Image

Development time
(programming and building)

A

B

C

D

E

`

21040coders.nl

CODE BANKS
IN SUMMARY

Code banks are… Code banks are not…

• A way to allow bigger program sizes in
restricted embedded environment.
It allow cost reduction by being compatible with lower-end
embedded platforms.

• Meant to provide a flexible framework to
store code in any storage medium
available in the embedded system.
Not in the CPU addressing space.

• Designed to be easily integrated in
existing code base.
There is no significant difference in development times
when using code banks.

• Platform agnostic
currently compatible with ARM on IAR toolchain.

• Meant for low-power applications.
Code banks make intensive use of external memory access
(typically through SPI) which might be prohibitive for certain
applications;

• Open source
The code is currently not disclosed.

`

22040coders.nl

HANDS ON
PART II

WRITE BUILD RUN

This section covers:

`

#ifndef BANK_HPP_
#define BANK_HPP_

#include <cstdint>
#include <limits>
#include <ctime>
// *REQUIRED* custom macros are defined here.
#include "BankedCodeUtils.hpp"

//Declare code bank and places it at a specific address
namespace Banks
{
CODE_BANK Bank : public SchedulableBank
{

// From: SchedulableBank class
EXPOSED: virtual void OnLoaded() override;
EXPOSED: virtual void OnStarted() override;
EXPOSED: virtual void OnScheduled() override;
EXPOSED: virtual void OnFinished() override;

// Bank methods
EXPOSED: void SetInternalValue(uint8_t value);
EXPOSED: uint8_t GetInternalValue();

// Internal method
RESTRICTED: uint8_t InternalCalculation();

private:
// Member attribute (always private from banks
uint8_t _internalValue;

};

#endif // BANK_HPP_
} // namespace Banks

WRITING CODE BANKS
PART II.A

23040coders.nl

`

24040coders.nl

WRITING CODE BANKS
WHAT DO YOU NEED?

• Code banks are simple C++ Classes
• A class that is marked to be banked is said to have a banked-type .
• Two differences:

• After building, a bank is surrounded by a metadata block (relevant for the CodeRunner);
• There is no concept of an instance of a code bank;

• New keywords and operators were designed to extend the C++ Language:
• These keywords and operators should have no impact in the general compilation/linking steps and

are mostly used during pre- and post-build.

`

25040coders.nl

WRITING CODE BANKS
WHAT DO YOU NEED?

• Definition keywords and usage operators:

Type Keyw./Oprt. C++ Equivalence Example

Definition

CODE_BANK class CODE_BANK MyBank

EXPOSED public EXPOSED: void MyMethod();

RESTRICTED private RESTRICTED: void Secret();

Usage

of
<BankedType>

[sizeof(MyBank)] BankContext context of MyBank;

@ Expands to: CodeRunner.RunXXXArgYYYRet @MyBank.MyMethod(context);

`

26040coders.nl

WRITING CODE BANKS

#ifndef BANK_HPP_
#define BANK_HPP_

#include <cstdint>
// *REQUIRED* custom macros are defined here.
#include "BankedCodeUtils.hpp"

//Declare code bank and places it at a specific address.
CODE_BANK Bank : public SchedulableBank
{

// From: SchedulableBank class
EXPOSED: virtual void OnLoaded() override;
EXPOSED: virtual void OnStarted() override;
EXPOSED: virtual void OnScheduled() override;
EXPOSED: virtual void OnFinished() override;

// Bank methods
EXPOSED: void SetInternalValue(uint8_t value);
EXPOSED: uint8_t GetInternalValue();

// Internal method
RESTRICTED: uint8_t InternalCalculation();

private:
// Member attribute (always private from banks persp.).
uint8_t _internalValue;

};

#endif // BANK_HPP_

#include "Bank.hpp“

// Implementation comes here.
void Bank::OnLoaded()
{...}
void Bank::OnStarted()
{...}
void Bank::OnScheduled()
{...}
void Bank::OnFinished()
{...}
void Bank::SetInternalValue(uint8_t value)
{...}
uint8_t Bank::GetInternalValue()
{...}
uint8_t Bank::InternalCalculation()
{...}

WHAT DO YOU NEED?

Bank.hpp Bank.cpp

// *REQUIRED* to run any method from a code bank.
#include "BankDefinitions.hpp"

// Implementation comes here.
void DoSomethingWithBanks()
{

BankContext context of Bank;

@Bank.SetInternalValue(context, 0x10);

}

Somewhere.cpp

`

27040coders.nl

WRITING CODE BANKS
WHAT DO YOU NEED TO KNOW?

• Banked-type members can be public, private or protected
• Access modifiers only apply in the context of inheritance, though;
• Member types (struct and class) are also allowed;

• virtual and override are fully allowed.
• Be very careful with them, though!

• static attributes are not recommended
• That’s due to the volatile nature of the bank’s context

 Could be added in a future implementation.
• Specifiers such as const, mutable, extern, volatile, etc. are allowed.

• Use of this is allowed, although with some caveats.

`

28040coders.nl

WRITING CODE BANKS
CODE BANKS CONTEXT

• A banked-type is in essence a class type:
• For classes, the C++ compiler allocate and generate code to manage a valid (and const) reference

to the object instance’s context (seen as this pointer).
• A reference to that context is automatically passed as the first function argument for each

member method call.
• For banked-types, this is a mutable context reference that must be explicitly provided during an

EXPOSED method call.
• Banked-types do not manage its context, and have no responsibility over its life-cycle: the

caller is responsible to allocate, handle and destroy any context data used across call.

`

$ IarBuild.exe project.ewp -build Debug
$ Running pre-build script at $PROJECT_ROOT
$ CodeBankBuilder -m pre -c $BANKED_CONFIG -v
$ Code Bank Builder v1.0.0
$ > Opening Configuration File (banks.json)
$ > Configurations loaded
$ ObjDump located.
$ $IAR_ROOT updated.
$ 658 files detected
$ > Fetching Code Banks
$ Bank 'MyBank' found. Extracting symbols...
$ Parsing 'MyBank.hpp‘... Done!
$ Exposed Method Detected: EXP1 (0 args, void return)
$ Exposed Method Detected: EXP2 (1 args,
$ Restricted Method Detected: RES1 (0 args
$ Region 'RegionMyBank' allocated at 0x10000000
$ Symbol table updated with 4 new tokens
$ Bank 'ThatBank' found. Extracting symbols...
$ Parsing ‘ThatBank.hpp'... Done!
$ Exposed Method Detected: Exposed (2 args
$ Region 'RegionThatBank' allocated at 0x11000000
$ Symbol table updated with 2 new tokens
$ > Writing RequiredMethods.hpp...
$ 12288 bytes written
$ > Backing up linker file (s6e1c12_rom.icf)...
$ 63602 bytes written
$ > Patching linker file... Done!
$ > Backing up bank files...
$ Two new files created at $PROJECT_ROOT/temp
$ 639124 bytes written
$ > Expanding header files...
$ Expanding 'MyBank.hpp‘... Done!
$ Expanding ‘ThatBank.hpp‘... Done!
$ > Backing up ‘BankDefinitions.hpp‘... Done!

29040coders.nl

BUILDING CODE BANKS
PART II.B

`

30040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD

• To allow proper bank’s code generation,
the project’s build must be expanded with extra
pre- and post- build steps.

• Both build steps are processed by the
BankedCodeBuilder tool, developed for the project
using C#;
• The tool requires a JSON input file, describing

the project’s structure and some output files.
• Multiple temporary (source, object etc.) files are

generated during the build process.

Project Files

Files containing
CODE_BANK keyword

Files including
BankDefintions.hpp

Other C++
Header/Source files

CodeBankBuilder -m pre ...

Pre-processed temp. code (injection)

RequiredMethods.hpp

C++ Build Tooling

Pre-processor Compiler Linker

Updated BankDefinitions.hpp &
CodeRunner*

To Post-Build…

temp.linkerconfig.icf

`

31040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD

• To allow proper bank’s code generation,
the project’s build must be expanded with extra
pre- and post- build steps.

• Both build steps are processed by the
BankedCodeBuilder tool, developed for the project
using C#;
• The tool requires a JSON input file, describing

the project’s structure and some output files.
• Multiple temporary (source, object etc.) files are

generated during the build process.

CodeBankBuilder -m post ...

Built Code

BankBin.cpp/BankBin.hpp

C++ Build Tooling

Pre-processor Compiler Linker

Bank.bin

Main Program Binary & Code Banks Binary

Object Files
Binary Files (.bin/.out)

Map File

Bank.dump

Program.dump

Relocation Tables

GTR.bin/GRT.hpp

GDTR.bin/GTDT.hpp

Binary Merger & Environment Cleaner

From Pre-Build…

`

32040coders.nl

BUILDING CODE BANKS

• Remove the keywords and operators are processed during the pre-build step
• Extra code information is acquired during this stage.
• In a nutshell: adjust the code to be properly built.

UNDER THE HOOD: PRE-BUILD

`

33040coders.nl

BUILDING CODE BANKS

• BankedCodeBuilder has to:
• Generate a symbol table containing all banked-types, as well as RESTRICTED and EXPOSED methods;
• Update the linker file, to place the code banks outside of the initial 128KB of flash, and ensure that no

PC-relative branches are used;
• Generates code for CodeRunner;
• Injects code wherever CODE_BANK, @ or of operators are used;

1

2

3

4

UNDER THE HOOD: PRE-BUILD

`

34040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD: STANDARD COMPILATION

• With all non-standard structures out of the code, and with all the appropriate
source/configuration adjustments, the C++ build tools are free to do their job:
• The build follows that standard flow of pre-processing, compilation, (multiple) optimizations

and linking;

• If the build is successful, the resulting object files and binaries will be used in the post-build steps;

`

35040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD: POST-BUILD

• Generate the code banks binary code to create the infrastructure needed for proper execution;
• It makes use of the fully built main application assembly code and the pre-linked code banks code.

• In a nutshell: resolves main application dependencies found in the code bank and outputs the
bank’s binary code including relevant metadata.

`

36040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD: POST-BUILD

• BankedCodeBuilder has to:
• Locate all main application dependencies used in the code banks;
• Map the dependencies found step 1 with symbols defined in the main application;
• Generate the relocation tables (GRT/GRDT);
• Patch the code banks code to make use of the tabled from step 3;
• Emit the binary code of each code bank

1

2

3

4

5

`

37040coders.nl

BUILDING CODE BANKS
UNDER THE HOOD: WRAPPING UP BUILD

• A few extra steps are performed during the post-build:
• The new content of GRT and GRDT gets re-injected into the binary of the main application;
• Any temporary file is deleted and the original source code is restored.

• This is specially valid for the pre-build artifacts

`

0x20d8: 0x4e18 LDR.N R6, `.text_8` ; 0x3623ad21 (908307745)
0x20da: 0x9801 LDR R0, [SP, #0x4]
0x20dc: 0x42b0 CMP R0, R6
0x20de: 0xd00e BEQ.N @20fe
0x20e0: 0x2280 MOVS R2, #128 ; 0x80
0x20e2: 0x0152 LSLS R2, R2, #5
0x20e4: 0x2004 MOVS R0, #4
0x20e6: 0x9000 STR R0, [SP]
0x20e8: 0xab01 ADD R3, SP, #0x4
0x20ea: 0x2112 MOVS R1, #18 ; 0x12
0x20ec: 0x6868 LDR R0, [R5, #0x4]
0x20ee: 0xf00c 0xfc45 BL ; 0xe97c
0x20f2: 0x9801 LDR R0, [SP, #0x4]
0x20f4: 0x42b0 CMP R0, R6
0x20f6: 0xd102 BNE.N @20fe
0x20f8: 0x2001 MOVS R0, #1
0x20fa: 0x8028 STRH R0, [R5]
0x20fc: 0xe000 B.N @2100

@20fe:
0x20fe: 0x802c STRH R4, [R5]

@2100:
0x2100: 0x2280 MOVS R2, #128 ; 0x80
0x2102: 0x0192 LSLS R2, R2, #6
0x2104: 0x2004 MOVS R0, #4
0x2106: 0x9000 STR R0, [SP]
0x2108: 0xab01 ADD R3, SP, #0x4
0x210a: 0x2112 MOVS R1, #18 ; 0x12
0x210c: 0x6868 LDR R0, [R5, #0x4]
0x210e: 0xf00c 0xfc35 BL ; 0xe97c
0x2112: 0x2402 MOVS R4, #2
0x2114: 0x9801 LDR R0, [SP, #0x4]
0x2116: 0x42b0 CMP R0, R6
0x2118: 0xd00c BEQ.N @2134
0x211a: 0x22c0 MOVS R2, #192 ; 0xc0
0x211c: 0x0192 LSLS R2, R2, #6
0x211e: 0x2004 MOVS R0, #4
0x2120: 0x9000 STR R0, [SP]
0x2122: 0xab01 ADD R3, SP, #0x4
0x2124: 0x2112 MOVS R1, #18 ; 0x12

38040coders.nl

RUNNING CODE BANKS
PART II.C

`

39040coders.nl

RUNNING CODE BANKS
DYNAMIC COMPONENTS

• The CodeRunner is the essential component when dealing with code banks in runtime.
• It is responsible to allocate and deallocate resources in the program RAM;
• It must properly branch to any EXPOSED method;
• It must properly return from the code bank;

• All operations performed by the CodeRunner should be executed as efficiently as possible and
must appear seamless to the programmer;

`

40040coders.nl

RUNNING CODE BANKS
BRANCHING TO/FROM CODE BANKS

• When the execution moment comes, the CodeRunner will use a function pointer to perform the
branch to the code bank in RAM;
• Registers R0 through R3 are used to pass the arguments and the return address is stored in

the link register;
• Braches are performed with the BLX instruction, forcing Thumb-mode (using a 32-bit

address);
• Return values are stored in R0;

• Branches from the code bank to the main application use veneering with absolute 32-bit
addresses (as discussed in the previous section);

• Branches from code banks to other code banks are indirectly performed through the
CodeRunner (which ends up as a special case of veneering branch);

`

41040coders.nl

RUNNING CODE BANKS
JOURNEY TO CODE BANKS

Class::MethodUsingCodeBanks()

@Bank.Method(...)

CodeRunner::RunXArgYYYYRet(...)

BLX @PROM_RAM[VBANK + METHOD_OFFSET]

...

BX LR

CodeRunner::RunXArgYYYYRet(...)

Class::MethodUsingCodeBanks()

^ No real Thumb syntax

M
a

in
 a

p
p

li
c

a
ti

o
n

P
R

O
G

_F
L

A
S

H

M
a

in
 a

p
p

li
ca

ti
o

n
P

R
O

G
_F

L
A

S
H

C
o

d
e

 B
a

n
k

P
R

O
G

_R
A

M

• Within the code bank, anything
can happen:
• Branches to the main

application;
• Branches to the internal

RESTRICTED methods;
• Indirect branches to other code

banks;
• Execution of IRQs

`

42040coders.nl

RUNNING CODE BANKS
CODERUNNER INTERNAL ORGANIZATION

• Internally, the code runner is subdivided into
three major components:

• The ExecutionEngine is responsible to
prepare and perform branches to code banks;

• The MemoryManager keeps track of the program
RAM resources and virtual banks;

• The StorageMapper is responsible to locate
and load code banks from an external memory
resource;

CodeRunner
(High-level architecture)

I/O Interface

Storage Medium
(External Flash, Network, etc.)

Communication Interface
(SPI/I2C/Ethernet/WiFi/BLE)

Storage Mapper
(Code Bank list, address translation, etc.)

Memory
Manager

Virtual code banks

Code bank stack

Execution Engine
(Auto-generated callbacks)

Memory resource

`

43040coders.nl

RUNNING CODE BANKS
CODERUNNER’S EXECUTION ENGINE

• The ExecutionEngine is a collection of
callbacks used to jump to code banks loaded in
the program RAM;

• It is composed of <<N>> callbacks where:
each callback <<Ni>> maps to a distinct
EXPOSED method signature (i ⊆ [0, N));

• Each callback <<Ni>> will have its unique
input arguments list or return types (i ⊆
[0, N)).

#ifndef CODE_RUNNER_HPP_
#define CODE_RUNNER_HPP_

#include <cstdint>
#include "BankedCodeUtils.hpp"

class CodeRunner
{
...
// Auto-generated methds

public:
void Run0ArgVoidRet(uint8_t bankID, uint8_t methodID, void* ctx);
bool Run0ArgBoolRet(uint8_t bankID, uint8_t methodID, void* ctx);
char Run0ArgCharRet(uint8_t bankID, uint8_t methodID, void* ctx);
uint8_t Run0ArgCharRet(uint8_t bankID, uint8_t methodID, void* ctx);

void Run1ArgVoidRet(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1);
bool Run1ArgBoolRet(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1);
char Run1ArgCharRet(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1);
uint8_t Run1ArgCharRet(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1);

...
};

#endif // CODE_RUNNER_HPP_

CodeRunner.hpp

bool Run0ArgBoolRet(uint8_t bankID, uint8_t methodID, void* ctx);

Generated based on (example):
// Code bank MyBank1

EXPOSED: bool IsComplete();

uint8_t Run1ArgUint8Ret(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1);

Generated based on (example):
// Code bank MyBankX

EXPOSED: uint8_t NumberOfEntries(bool update);

`

44040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT

• Originally, banks were monolithic chunks of code taking ownership of the entire program RAM
resources when loaded;
• Only one code bank was allowed to be loaded at a time and no reentrant calls were allowed.

• That’s a not very efficient approach:
• As code banks were more frequently used in the project, it was clear that the average bank size was

way smaller than program RAM buffer;
• In general, banks were between 500 Bytes to 1.5KB while the buffer was as big as 3KB;
• That lead to a sub-allocation of the program RAM (of about 1/3 to 1/2) leading to low-performance

in some cases.
• That was particularly noticeable in UI-driven code banks;

• Code banks were not allowed to call other code banks, or even to call functions in the main application
that would make use of code banks;

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• To solve that problem, the concept of
virtual code banks was developed:
• A virtual code bank is a slice of the

Program RAM, holding one code bank;
• Virtual code banks can be loaded at

any contiguous memory range where
they fit;

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x03
Address: 0x20003000

ID: 0x1D
Address: 0x20003B60

ID: 0x09
Address: 0x20003D40

Free memory: 0x0BF

Virtual bank 01

Virtual bank 03

Virtual bank 04

Program RAM Code Bank Stack

ID: 0x25
Address: 0x200038E0

Virtual bank 02

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• The stack is used when suspending or
resuming code banks:
• Upon requests, banks can be

suspended (i.e. lack of memory) and
later resumed, in an operation called
context switching;

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x03
Address: 0x20003000

ID: 0x1D
Address: 0x20003B60

ID: 0x09
Address: 0x20003D40

Free memory: 0x0BF

Virtual bank 01

Virtual bank 03

Virtual bank 04

Program RAM Code Bank Stack

ID: 0x25
Address: 0x200038E0

Virtual bank 02

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• 4 banks loaded at the same time;
• 2 banks were suspended at some

point in the past.

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x03
Address: 0x20003000

ID: 0x1D
Address: 0x20003B60

ID: 0x09
Address: 0x20003D40

Free memory: 0x0BF

Virtual bank 01

Virtual bank 03

Virtual bank 04

Program RAM Code Bank Stack

ID: 0x25
Address: 0x200038E0

Virtual bank 02

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• A new code bank is must be loaded
in memory;
• But there is no room for it!

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x1D
Address: 0x20003B60

Free memory: 0x0BF

ID: 0x25
Address: 0x200038E0

Virtual bank 02

Virtual bank 03

Program RAM Code Bank Stack

ID: 0x02
Address: --

New code bank

ID: 0x25
Address: 0x200038E0

Virtual bank 02

ID: 0x03
Address: 0x20003000

Virtual bank 01

ID: 0x09
Address: 0x20003D40

Virtual bank 04

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• No problem! Unload 0x25 and load
0x02 in its place;
• 0x25 goes to the code bank stack for

a while;
• We say that 0x25 has been

suspended;

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x1D
Address: 0x20003B60

Free memory: 0x0BF

Virtual bank 03

Program RAM Code Bank Stack

ID: 0x02
Address: --

New code bank

ID: 0x03
Address: 0x20003000

Virtual bank 01

ID: 0x09
Address: 0x20003D40

Virtual bank 04

ID: 0x25
Address: 0x200038E0

Virtual bank 02

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• Now we can run 0x02!

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x1D
Address: 0x20003B60

Free memory: 0x0BF

Virtual bank 03

Program RAM Code Bank Stack

ID: 0x02
Address: 0x200038E0

Virtual bank 02

ID: 0x25
Address: 0x200038E0

ID: 0x03
Address: 0x20003000

Virtual bank 01

ID: 0x09
Address: 0x20003D40

Virtual bank 04

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• Done 0x02! 0x25 can be resumed. A
full context switching is needed.
• Request and reload 0x25’s binary

code;
• Re-patch 0x25’s code
• Reload it into RAM and update the

virtual code bank’s house keeping;

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x1D
Address: 0x20003B60

Free memory: 0x0BF

Virtual bank 03

Program RAM Code Bank Stack

ID: 0x25
Address: 0x200038E0

Virtual bank 02

• Re-load bank’s binary
• Re-patch addresses
• Load it into its old position in RAM

ID: 0x25
Address: 0x200038E0

Virtual bank 02

ID: 0x03
Address: 0x20003000

Virtual bank 01

ID: 0x09
Address: 0x20003D40

Virtual bank 04

ID: 0x02
Address: --

New code bank

`

45040coders.nl

RUNNING CODE BANKS
MEMORY MANAGEMENT: VIRTUAL CODE BANKS AND CODE BANK STACK

• Back to the beginning…

ID: 0x01
Address: 0x200030A0

ID: 0x1D
Address: 0x200031E0

ID: 0x03
Address: 0x20003000

ID: 0x1D
Address: 0x20003B60

ID: 0x09
Address: 0x20003D40

Free memory: 0x0BF

Virtual bank 01

Virtual bank 03

Virtual bank 04

Program RAM Code Bank Stack

ID: 0x25
Address: 0x200038E0

Virtual bank 02

`

46040coders.nl

RUNNING CODE BANKS
CODE EXECUTION: INS-AND-OUTS

• The execution of a code bank is carried over exactly as you would expect:
• Stack and Heap usage is shared among the main application and the code banks;
• Exceptions will trigger a call stack unrolling as they would normally do;
• (local) Variable scope follows the usual rules;

• Member attributes depend on the life-cycle of the bank’s context!

• Some points should be taken into account:
• Running virtual methods require proper initialization of VPTR table;

• The bank’s constructor is responsible for doing so: remember that your code must do it explicitly!
• Similarly, destructors need to be called explicitly (if needed);
• There is no real use of RTTI (thus, no use for dynamic_cast) with banked-types;

`

47040coders.nl

RUNNING CODE BANKS
CODE EXECUTION: INS-AND-OUTS

• The CodeRunner’s house keeping must be taken into account when integrating it in your
application:
• All algorithms in the CodeRunner are of complexity 𝑂(𝑛), mostly I/O-bound;
• That means, the bigger the number of banks, and the size of those banks, the slower the CodeRunner

becomes;
• The speed of the interface between the CPU and the storage medium, plays a huge role in the

overall runtime performance;

• Code banks place some pressure over stack size: every call to a code bank requires intermediate steps
which can get up to 5 levels (worst case scenario);
• Furthermore, re-entrant code banks multiply that cost by the amount of nesting calls they perform;
• Careful stack management is advised!

• This is also valid when dimensioning the code bank’s stack;

`

48040coders.nl

GENERAL TOPICS
PART III

DEBUG

This section quickly covers:

TESTING SECURITY WHAT’S NEXT

`

49040coders.nl

DEBUGGING CODE BANKS

• Your success on debugging directly depends on the building/debug
tools you are using:
• In any case, there is no C++ level debug support;
• Your tool must be able to disassemble ARM/Thumb code in RAM

space (IAR can’t, btw);
• Set breakpoints in RAM are also desirable;

• Forget about debug symbols:
• The code loaded in RAM has been patched (both in build and runtime);
• The header will also ruin any addresses mentioned in the dbs files,

making the binary inconsistent with the compiler-generated debug
data;

`

50040coders.nl

DEBUGGING CODE BANKS

• Be ready to learn ARM binary code…
• That’s what I would usually debug with:

You are here!

`

51040coders.nl

TESTING CODE BANKS

• Unit testing code banks is possible using code banks, but require
some getting-used to:

• The new syntax elements must not be included. That means:
• Include a special testing header to your code-bank

(BankTestUtils.hpp);
• Surround special code (using @ and of) with #ifdef/#ifndef

conditional compilation statements;
• Use a CodeRunner mock object in the test body;

• Admittedly needs more work to get to an acceptable level;
• Only toyed around with this idea;

`

52040coders.nl

SECURITY & CODE BANKS

• Code banks are usually stored in (potentially) exposed storage media;
• That may open room for hackers to extract the application code

and reverse-engineer your product;
• This could lead to IP leaks;
• Code injection, leading to misuse of the host hardware;

• Code encryption is a must have:
• Secure Flash (in the case of external Flash chips);
• Encrypted communication channels (i.e. Https, in the case of

remote code storage);
• Discuss this with your hardware/production teams;

`

53040coders.nl

WHAT’S NEXT

• Port to other platforms/compilers;
• GCC and Keil would be a good start;

• Simplify the build flow;
• Remove the lots of temporary files;
• Reduce build times (multithread support)

• Empower debugging:
• Generate new debug symbols based on the information

acquired during build;
• Improve testing infrastructure;

`

#ifndef FACTORIAL_CALCULATOR_HPP_
#define FACTORIAL_CALCULATOR_HPP_

#include <cstdint>
#include "BankedCodeUtils.hpp"

CODE_BANK FactorialCalculator
{

// Only one Exposed Method
EXPOSED: uint32_t Calculate(uint8_t number)
{
uint32_t result = 1;

for(auto i = 1; i <= number; i++)
{
result = result * i;

}

return result;
}

};

#endif // FACTORIAL_CALCULATOR_HPP_

// Include required information to allow use of code banks
#include "BankDefinitions.hpp"
#include "infrastructure/CodeRunner.hpp"

//Declare code bank and places it at a specific address.
int main()
{

...
// The code runner should be initialized at some point
CodeRunner::Initialize(&storageController);
...

BankContext context of FactorialCalculator

uint32_t factorial = @FactorialCalculator.Calculate

5);

std::cout<<"Factorial of 5: "<<factorial<<
...

}

#endif // BANK_HPP_

54040coders.nl

QUESTIONS?

`

BACKUP040coders.nl

FACTORIAL.BANK

// C++ std headers
#include <iostream>
#include <cstdint>

// Include required information to allow use of code banks
#include "BankDefinitions.hpp"
#include "infrastructure/CodeRunner.hpp"

//Declare code bank and places it at a specific address.
int main()
{

...
// The code runner should be initialized at some point
CodeRunner::Initialize(&storageController);
...

BankContext context of FactorialCalculator;

uint32_t factorial = @FactorialCalculator.Calculate(context, 5);

std::cout<<"Factorial of 5: "<<factorial<<std::endl;
...

}

#endif // BANK_HPP_

Example Program

#ifndef FACTORIAL_CALCULATOR_HPP_
#define FACTORIAL_CALCULATOR_HPP_

#include <cstdint>
#include "BankedCodeUtils.hpp"

CODE_BANK FactorialCalculator
{

// Only one Exposed Method
EXPOSED: uint32_t Calculate(uint8_t number)
{

uint32_t result = 1;

for(auto i = 1; i <= number; i++)
{

result = result * i;
}

return result;
}

};

#endif // FACTORIAL_CALCULATOR_HPP_

FactorialCalculator.hpp

cso@op040 /projects/programs
$./Factorial
$ Factorial of 5: 120

Output

After properly building:

`

BACKUP040coders.nl

CODERUNNER

bool CodeRunner::Run2ArgBoolRet(uint8_t bankID, uint8_t methodID, void* ctx, void* arg1, void* arg2)
{

// Check whether code bank with ID bankID is in memory; If not, load it.
auto virtualBank = LoadCodeBankIfNeeded(bankID);

// Get a pointer to the first bank’s address in the program RAM and get the Exposed method Offset offset from the bank’s header.
uint8_t *bankPointer = reinterpret_cast<uint8_t*>(reinterpret_cast<uint32_t>(executableMemory) + virtualBank->bankAddress);
uint16_t methodOffset = GetExposedMethodOffset(bankPointer, methodID);

// Sanity Check.
if (methodOffset == 0xFFFF) { SetFailure(UnknownMethod); return; }

// Create a function pointer to the exact address of the Exposed method and force it to be taken in Thumb mode.
uint32_t exposedMethodAddress = methodOffset + reinterpret_cast<uint32_t> (bankPointer) + GetHeaderSize(bankPointer);
bool (*method)(void *, void *, void *) = reinterpret_cast<bool(*)(void *, void *, void *)>(exposedMethodAddress | 0x01);

// Ensure this bank cannot be unloaded.
virtualBank->Lock();

// Branch and acquire return value
bool returnValue = (*method)(ctx, arg1, arg2);

// Restore any possible bank suspended during the execution of the Exposed method.
RestoreSuspendedBanksIfNeeded();
virtualBank->Unlock();

return returnValue;
}

CodeRunner.cpp

`

BACKUP040coders.nl

PRE-BUILD::SYMBOL TABLE

• The BankedCodeBuilder symbol table is a simple data structure holding the name of each
code bank, its header file path and a list of each RESTRICTED or EXPOSED methods.
• The tool will sweep every file in the project containing CODE_BANK, looking for code banks

declarations.

PRE-BUILD: 1 2 3 4

`

BACKUP040coders.nl

PRE-BUILD::LINKER FILE UPDATE
Memory Map (not to scale)

CPU Addressing Space Flash Addressing Space

8MB

128KB

12KB

Dynamic Loading
(into RAM)

Code Bank X

1 Variable Ref

1 Variable Ref

Method Ref

2 Method Ref

2

0x00000000
tot
0x0001FFFF

0x20000000
tot
0x20003FFF

• Ensuring that the code bank gets built, is just one
part of the riddle:
• It must be built correctly!

1. It places the code outside the first 128KB of the
CPU addressing space;

1. Give an unique code region for each code
bank

2. It ensures that all references to main application
variables/functions are made using absolute
addresses;

PRE-BUILD: 1 2 3 4

`

BACKUP040coders.nl

PRE-BUILD::CODE GENERATION

• The second-last stage of pre-building consists of CodeRunner generation;
• CodeRunner is the component capable of branching to code banks;
• It needs one function for each different code bank method signature

• That’s due to the way function pointers and Arm’s Procedure Call convention is defined;

PRE-BUILD: 1 2 3 4

`

BACKUP040coders.nl

PRE-BUILD::CODE GENERATION

• The second-last stage of pre-building consists of CodeRunner generation;
• CodeRunner is the component capable of branching to code banks;
• It needs one function for each different code bank method signature

• That’s due to the way function pointers and Arm’s Procedure Call convention is defined;

PRE-BUILD: 1 2 3 4

<RET_TYPE> Run<N_ARGS>Arg<RET_TYPE>Ret(uint8_t bank_id, uint8_t method_id, void* context, void * arg0, ..., void * argN);

`

BACKUP040coders.nl

PRE-BUILD::CODE GENERATION

• Since @ is no standard C++ operator, it must be
patched-out before the code is delivered to the
compiler;
• This is done during the code injection phase.

• The @ operator is ultimately translated into a call to
the CodeRunner providing:
• the bank’s location in the Flash;
• the method location in the bank’s header;
• A reference to the context and the arguments;

• Likewise, The of operator is translated into the declaration
of a BankContext array, used as the bank’s context used
during a method call;
• BankContext is in fact an alias of uint8_t;

Original Source Code

@SampleBank.SampleMethod(NoContext, 0x10);

Original Source Code

CodeRunner::Instance().Run1ArgVoidRet
(
BankedTypes.SampleBank,
SampleBankMethods.SampleMethod,
reinterpret_cast<void*>(&_noThis),
reinterpret_cast<void*>(&_arg1)

);

Pass 1: pre-build injection

@ operator transformation

BankContext context of SampleBank;

BankContext context[sizeof(SampleBank)];

Pass 1: pre-build injection

of operator transformation

PRE-BUILD: 1 2 3 4

`

BACKUP040coders.nl

POST-BUILD::LOCATING DEPENDENCIES

• Code banks unlinked assembly are used to
acquire all main application variables and
functions referred in the code bank;
• In the object file dumps, those references appear

as unresolved symbols (such as
_ZN6ExternalCall1 or
_ZN8ExterbakVariable).

• A list of all symbols of every code bank is held by
the BankedCodeBuilder.
• Those symbol must be found in the main

application (where their addresses can be
extracted);

$t:
...
0x3e: 0x6869 LDR R1, [R5, #0x4]
0x40: 0x7d4a LDRB R2, [R1, #0x15]
0x42: 0x2a29 CMP R2, #41 ; 0x29
0x44: 0xd111 BNE.N @6a
0x46: 0x1c48 ADDS R0, R1, #1
0x48: 0xf7ff 0xfffe BL atoi
0x4c: 0x0001 MOVS R1, R0
0x4e: 0x0600 LSLS R0, R0, #24
0x50: 0xd020 BEQ.N @94
0x52: 0x48ff LDR.N R0, REGION_BANK_21 ; _ZN8ExternalVariable
...
0x54: 0x6800 LDR R0, [R0]
0x56: 0x22bd MOVS R2, #189 ; 0xbd
0x58: 0x5c82 LDRB R2, [R0, R2]
0x5a: 0xb2cb UXTB R3, R1
0x5c: 0x429a CMP R2, R3
0x5e: 0xd319 BCC.N @94
0x60: 0x1e49 SUBS R1, R1, #1
0x62: 0xb2c9 UXTB R1, R1
0x64: 0xf7ff 0xfffe BL _ZN6ExternalCall1
...

$d:
REGION_BANK_21:

0x148: 0x00000000 DC32 _ZN8ExternalVariable

Code bank object dump

This step is specially interested in static relocation symbols such as those labeled with R_ARM_THM_CALL or
R_ARM_ABS32. No dynamic relocation is expected to appear throughout the code.

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::ADDRESS MAPPING

• Mapping consists of locating the symbols in the main application dump (by name) and
extracting their 32-bit addresses;
• Thumb-class relocation symbols such as R_ARM_THM_CALL will map into main application function

addresses and will be used as part of the veneering patching stage;
• Those addresses will ultimately be added to GRT;

• Data-class relocation symbols such as R_ARM_ABS32 will map into main application variables and
will be inserted in the code bank’s header to be used during the address patching;
• Those addresses will ultimately be added to GRDT;

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::GLOBAL RELOCATION TABLES

• The Global Relocation Tables (GRT & GRDT) are a way to be flexible with the dependencies
shared among the main application and the code banks;
• It creates truly position-independent code, allowing the main application to independently

change, without requiring a full re-build of the code banks.

• The content of the tables are used in two situations:
• Static Address Relocation (SAR);
• Dynamic Address Patching (DAP);

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::GLOBAL
RELOCATION TABLES

• In the current implementation, GRT/GRDT is list of 128
32-bit void pointers to methods in the main application.
• GRT starts at address 0x1F8E0;
• GRDT starts at address 0x1F6E0;
• Each entry has a well known address (base +

(entry_index*4)) and an appropriate label
GRT_ENTRY_XXX/GRDT_ENTRY_XXX;

GRDT

...

// _variable1
#pragma location = 0x0001F6E0
__root const uint32_t GRDT_ENTRY_0001 = 0x200024e0;

// _variable2
#pragma location = 0x0001F6E4
__root const uint32_t GRDT_ENTRY_0002 = 0x20003e8c;

// _variable3
#pragma location = 0x0001F6E8
__root const uint32_t GRDT_ENTRY_0003 = 0x20002e6c;

// _variable4
#pragma location = 0x0001F6EC
__root const uint32_t GRDT_ENTRY_0004 = 0x20002ec4;

// _variable5
#pragma location = 0x0001F6F0
__root const uint32_t GRDT_ENTRY_0005 = 0x20001ef8;

...

...

// __aeabi_memcpy
#pragma location = 0x0001F8E0
__root const uint32_t GRT_ENTRY_0001 = 0x000059E9;

// __iar_small_idiv
#pragma location = 0x0001F8E4
__root const uint32_t GRT_ENTRY_0002 = 0x00006BD5;

// snprintf
#pragma location = 0x0001F8E8
__root const uint32_t GRT_ENTRY_0003 = 0x0000C6FB;

// _Z6ito02diPc
#pragma location = 0x0001F8EC
__root const uint32_t GRT_ENTRY_0004 = 0x0000C719;

...

GRT

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::VENEERS

• Veneers are small sections of code generated by
the linker to allow branching outside of the range
of BL instructions;
• Veneers are required because the runtime address

of a code bank lies about 64MB away from the main
application (starting at 0x20003000);

• All veneers generated in code banks are thus long
branch veneers;

; Linker-generated code
$t:
`?Veneer 14 (3) for __aeabi_memcpy`:

0x10000000: 0xb408 PUSH {R3}
0x10000002: 0x4b02 LDR.N R3, [PC, #0x8] ; __aeabi_memcpy
0x10000004: 0x469c MOV R12, R3
0x10000006: 0xbc08 POP {R3}
0x10000008: 0x4760 BX R12
0x1000000a: 0x46c0 MOV R8, R8

$d:
0x1000000c: 0x00000000 DC32 __aeabi_memcpy

Memcpy veneeer

In-depth:
1. Push R3 to (for temporary calculation)
2. Load the absolute address of memcpy into R3

located 8 bytes away of the current PC value
3. Save the address into R12

(note that R12 content is allowed to be modified according to APCS)

4. Pop R3 (restore argument)
5. Branch to the address in R12 (in Thumb mode)
6. NOP

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::VENEER PATCHING

• After the Relocation Tables are generated, each veneer detected in the code banks must branch to an
address held by a GRT entry;

• This is done by directly changing the absolute address stored in the veneer, by the address of the GRT
entry holding the pointer to the to the function targeted by the veneer;
• Furthermore, due to the indirection introduced by GRT, the assembly code itself must be updated, to

use the indirect addressing mode when loading the function address;

; Patched veneer code
$t:
`?Veneer 14 (3) for __aeabi_memcpy`:

0x10000000: 0xb408 PUSH {R3}
0x10000002: 0x4b02 LDR.N R3, [PC, #0x8]
0x10000004: 0x1b68 LDR.N R3, [R3]
0x10000004: 0x9c46 MOV R12, R3
0x10000008: 0xbc08 POP {R3}
0x1000000a: 0x4760 BX R12

$d:
0x1000000c: 0x0001f8e0 DC32 GRT_ENTRY_0001

Patched Veneer

; Linker-generated code
$t:
`?Veneer 14 (3) for __aeabi_memcpy`:

0x10000000: 0xb408 PUSH {R3}
0x10000002: 0x4b02 LDR.N R3, [PC, #0x8]
0x10000004: 0x469c MOV R12, R3
0x10000006: 0xbc08 POP {R3}
0x10000008: 0x4760 BX R12
0x1000000a: 0x46c0 MOV R8, R8

$d:
0x1000000c: 0x000059e9 DC32 __aeabi_memcpy

Original Veneer

0x10000004: 0x469c MOV R12, R3

0x1000000a: 0x46c0 MOV R8, R8

0x1000000c: 0x00000000 DC32 __aeabi_memcpy

0x10000004: 0x1b68 LDR.N R3, [R3]
0x10000004: 0x9c46 MOV R12, R3

0x1000000c: 0x0001f8e0 DC32 GRT_ENTRY_0001

POST-BUILD: 1 2 3 4 5

`

BACKUP040coders.nl

POST-BUILD::BINARY GENERATION

• The last post-build step is the generation of the binary code of
each code bank;
• The binaries generated in this state are ready to be programmed in

the device’s external flash and have the proper structure to be
compatible with the CodeRunner;

• Each code bank binary holds an header providing metadata used
by the CodeRunner to locate EXPOSED methods and to perform
address patching;

…

HeaderSize PLO

EXPOSED[1]

EXPOSED[0]

EXPOSED[3]

patch_adrs[0] patch_adrs

[1] patch_adrs[2] …

Veneers
(patched)

Code bank code
(Thumb-2 linked and unpatched)

Constants*

E
xe

c
u

ta
b

le
 C

o
d

e
H

e
a

d
e

r

Padding
(up to 3 KB)

P
a

d
d

in
g

POST-BUILD: 1 2 3 4 5

