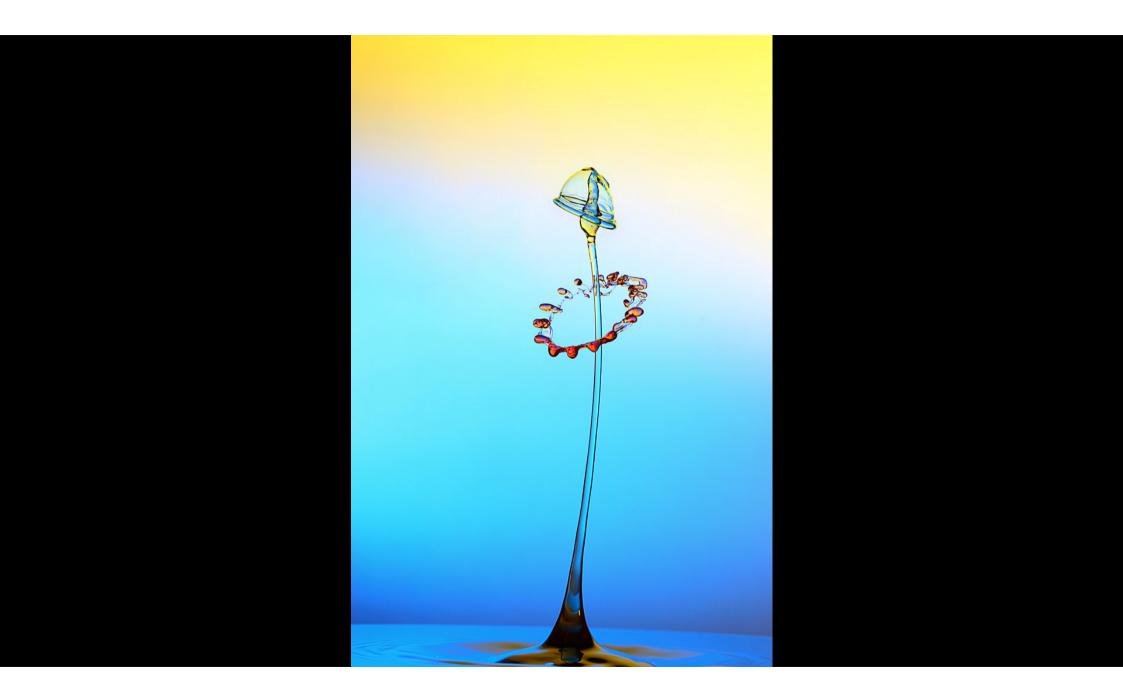

Software controlled high speed photography

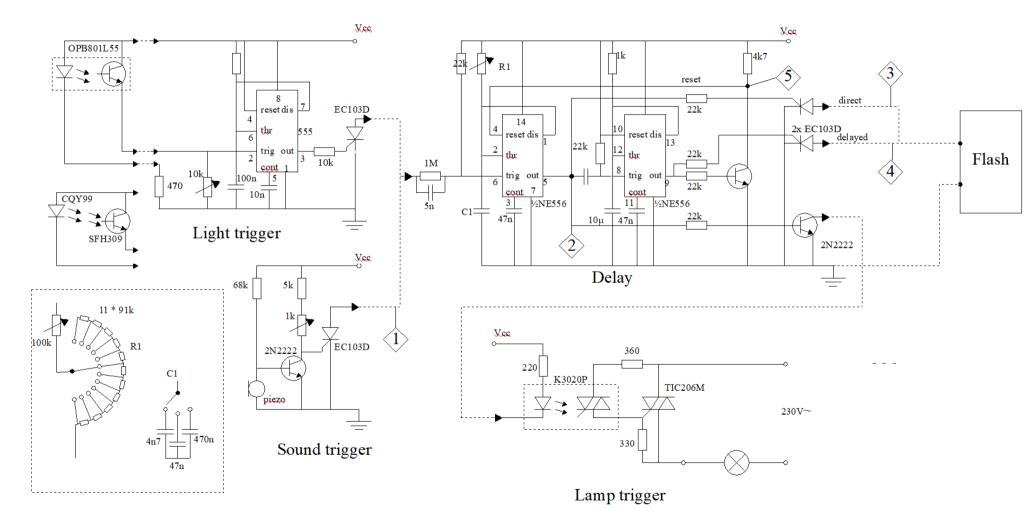
Lex Augusteijn November 2018


www.lex-augusteijn.nl

lex.augusteijn@gmail.com

How to take such pictures?

- \bullet Exposure time as short as 40 μs
- Exposure time ≠ shutter time
- Dark scene
- Open shutter (for e.g. 1/10 sec)
- Synchronize events (drops, bullets, ...)
- Fire flash(es)
- Exposure time = flash duration



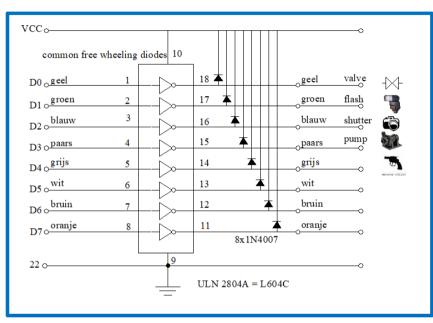
Analog equipment

Analog equipment

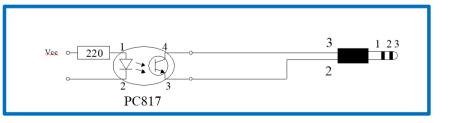
• Original analog timer, 500 µs .. 0.5 sec

Draw-backs of analog equipment

- Precision
- Reproducability
- Pellet iso bullet
- One input, one output event
 - Optical, audio input
 - Flash output
 - No shutter control, no valves
- Need event before input
 - Valve before gun
- Go digital!



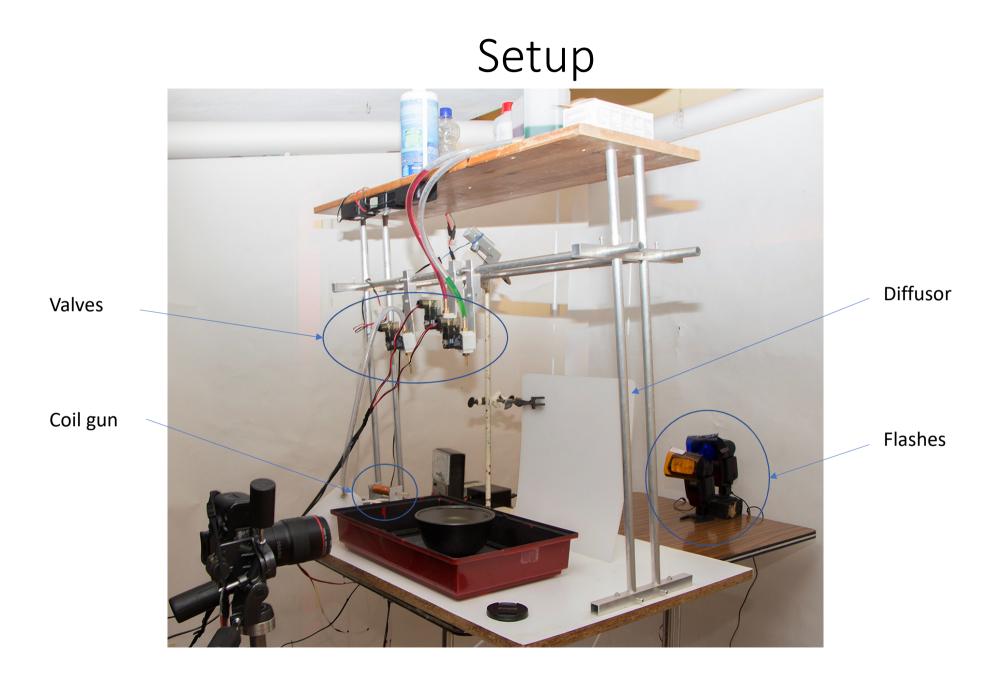
Digital equipment


• Laptop with parallel(!) port

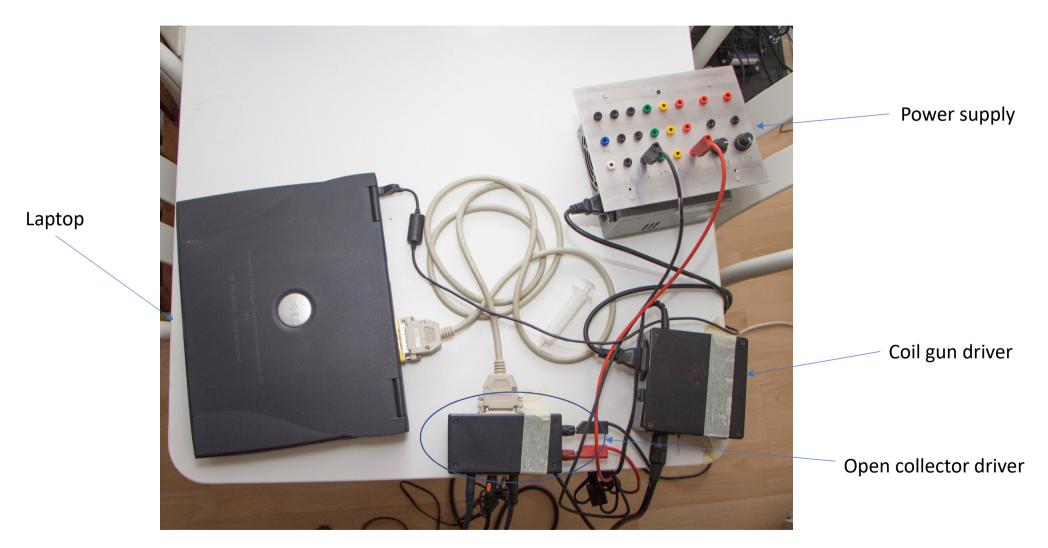
• Open collector driver

- Opto coupler to insulate sensitive devices (like camera!)
- Wiring to
 - Flashes
 - Camera
 - Valves
 - Pump
 - Gun

Software

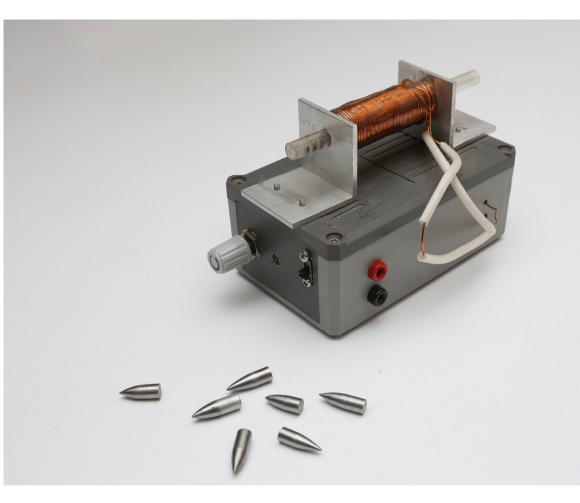

- Redhat 9, single user, no network
 - Minimal latency
- Running as root (sbit) to get access to parallel port
- Control parallel port through MMIO: 1 μ s resolution
 - void outb(unsigned char value, unsigned short int port); // port = 0x378
- Language to specify events and actions
- Implement through Front (*http://front.sourceforge.net*)

Software


Drop control code

Drop grammar in Front

```
port valve
                                                                         events ::= ports : { Port
                                                                                   events : { Event } ;
port flash
port shutter
                                                                        Port ::= "port" SP id : DEFINING Ident NAMESPACE PORT NL
                                                                                  value : Int = 0 ;
port pump
port qun
                                                                        Event ::= "event" SP id : DEFINING Ident NAMESPACE EVENT SP
                                                                                  "action" SP
                                                                                  port
                                                                                           : APPLIED Port NAME Ident SP
              action pump
                               duration 700 ms start
event pump
                                                                                  duration : [ "duration" SP Time SP ]
                                                                                  < StartEvent ::= "start"
event drop1
              action valve
                               duration 55 ms
                                                100 ms after pump
                                                                                   InputEvent ::= "input"
                                                                                   | TimedEvent ::= t : Time SP "after" SP pred : APPLIED Event NAME Ident
                                                                                  > NL
event drop2
              action valve
                               duration 45 ms
                                                134 ms after drop1
                                                                                  ticks : clock ticks = 0
                                                                                                              %% time at which the event should happen
                                                                                  action : Action = NULL
                                                                                                              %% Action to be executed
                                                                                  arg
                                                                                        : Int = 0
                                                                                                              %% Argument to action
event camera action shutter
                               duration 500 ms 350 ms after drop1
                                                                                  passed : clock_ticks = -1 %% time at which the event happened
                                                                                  ;
event light
              action flash
                               duration 10 ms
                                                150 ms after camera
                                                                        Time ::= t : Int SP
                                                                                  unit : TimeUnit ;
                                                 124 ms after camera
event shoot
              action gun
                               duration 7 ms
                                                                        TimeUnit ::= < u time ::= "us"
                                                                                       m time ::= "ms"
                                                                                      | s time ::= "s"
                                                                                     > ;
```



Setup

Coil gun

- Charge capacitor (~1mF) to 200-300V
- Dozens of Joules (¹/₂ CV² : lethal!)
- Short-circuit over big coil
- Strong induction peak
- Pull steel bullet through coil
- Timing very precise
- Control bullet speed by pulse duration
- How to switch 300V and 100A within microseconds?
- IGBT (used in induction cooktop)

International **ICR** Rectifier

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features

- UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in
- bridge configurations Industry standard TO-247AC package
- Lead-Free

Benefits

- Generation 4 IGBT's offer highest efficiencies available
- · IGBT's optimized for specific application conditions
- HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require
- less/no snubbing · Designed to be a "drop-in" replacement for
- equivalent industry-standard Generation 3 IR IGBT's

Absolute Maximum Ratings

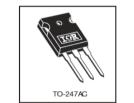
	Parameter	Max.	Units
V _{GES}	Collector-to-Emitter Voltage	600	V
lc @ Tc = 25°G	Continuous Collector Current	55	
lc @ Tc = 100°C	Continuous Gollector Current	27	
low.	Pulsed Collector Gurrent ①	220	Α
ш	Clamped Inductive Load Gurrent 2	220	
I _F @ T _C = 100°C	Diode Continuous Forward Current	25	
IFM	Diode Maximum Forward Gurrent	220	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	
P _D @ T _C = 100°C	Maximum Power Dissipation	78	w
Tj	Operating Junction and	-55 to +150	
TSTG	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Reuc	Junction-to-Gase - IGBT			0.64	
Rejc	Junction-to-Gase - Diode			0.83	°C/W
Recs	Gase-to-Sink, flat, greased surface		0.24		
Reja	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

04/23/04

PD -95185


IGBT

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
l _C @ T _C = 25°C	Continuous Collector Current	55	
l _C @ T _C = 100°C	Continuous Collector Current	27	
СМ	Pulsed Collector Current ①	220	А
LM	Clamped Inductive Load Current 2	220	
I _F @ T _C = 100°C	Diode Continuous Forward Current	25	
FM	Diode Maximum Forward Current	220	

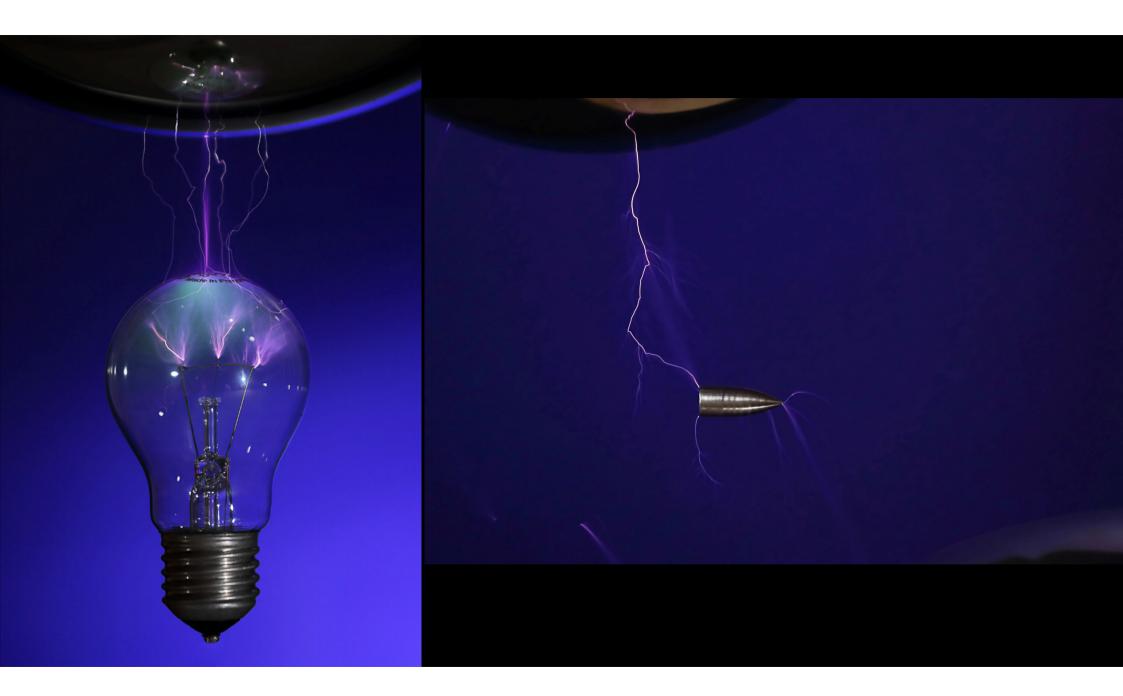
Switching Characteristics @ T_J = 25°C (unless otherwise specified)

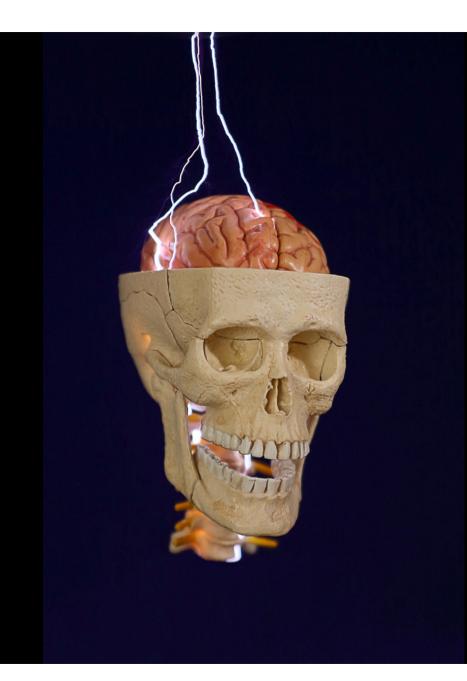
	Parameter	Min.	тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)		180	270	nC	I _C = 27A
Qge	Gate - Emitter Charge (turn-on)		25	38		V _{CC} = 400V See Fig. 8
Qgc	Gate - Collector Charge (turn-on)		61	90		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time		32			
tr	RiseTime		20		ns	V J = 25°C
t _{d(off)}	Turn-Off Delay Time		170	260		T _J = 25°C C = 27A, V _{CC} = 480V V _{GE} = 15V, R _G = 5.0Ω
t _f	FallTime		88	130	1	$V_{GE} = 15V, R_{G} = 5.0\Omega$
	1					1

n-channel

IRG4PC50UDPbF

UltraFast CoPack IGBT


 $V_{GES} = 600V$


VGE(on) typ. = 1.65V

@V_{GE} = 15V, I_C = 27A

High voltage

Thank you!