
Real-Time Systems,
were better in the past

(oh, really?)

Hans Zuidam,
for 040coders.nl
September 20, 2018

What is real-time anyway?

 Systems that typically control some external
physical process

 Algorithms must be logically correct
 In a real-time system the time at which the

algorithm completes is crucial
 Cannot be too late

What is real-time anyway?

 Hard real-time
The system will fail if a computation is not
completed before a specified deadline

 Soft real-time
The system can recover from missing timing
deadlines

Clocks

 Confusing terminology
 Real-time clock also called a wall clock
 May move backward (leap seconds)
 May miss ticks

 Wall clocks are not good enough

Clocks

 Real real-time clock is monotonic increasing
 Never moves backward
 Never skips a pulse
 Resolution determines measurement accuracy

Scheduling algorithms

 Scheduling is determining what to do next
 Ease of modeling partition the system in tasks
 Tasks have requirements when they should

be active
 Tasks can have a number of states

Running – Actively using the CPU
Runnable – Can run but other task is running
Waiting – Is waiting for something to happen

Scheduling algorithms

Running Runnable

Waiting

Scheduling algorithms

 Priority based scheduling
 Each task has a priority (a number)
 Runnable task with the highest priority runs
 Task runs until it has to wait
 Only then the next highest priority task

(which is runnable) is made running

 This is called FIFO aka First In First Out

Scheduling algorithms

 Preemptive round-robin
 Same a priority based scheduling
 After an external event the “next” task must

be selected
 Select the next runnable task

(”next” task has same priority as previous)
 Previous task is preempted

Scheduling algorithms

 Earliest deadline first (EDF)
 Dynamic priority algorithm
 Select the task closest to its deadline
 Each task has: execution time and period
 Not trivial to guard against overflow

Scheduling algorithms

 Rate monotonic
 Each task has a (static) period
 Task with shortest period runs first
 Well suited for hard real-time

Locking - Semaphores

 Invented by Edsger Dijkstra
 Operations are called P() and V()
 P() waits until the semaphore is acquired
 V() releases the semaphore
 No notion of a task
 Can protect shared data
 Can be used as inter-task signal
 Ideal source for deadlocks

Locking - Mutexes

 A lock with ownership
 Operations are lock() and unlock()
 Only the one using lock() can unlock()
 Easier to use than semaphores
 Typically used by shared data

Locking - Spinlocks

 ”Wait until a bit is set”
 Compare and exchange atomic instruction
 Infinite loop (ugh…)
 But should be very light weight
 Only a few instructions
 Should loop only a a few times
 Ideally suited between interrupts and tasks

No memory allocation?

 Calculate maximum memory use beforehand
 No need for an allocator.➞ No need for an allocator.

 Allocators operator on a shared pool of
available memory.

 Tasks may block competing for allocation.➞ No need for an allocator.
 Could make task private “sub-pools”
 Must still be able to satisfy maximum

memory usage.

Notable real-time kernels

 Many, many real-time kernels
(more than Web framework?)

 Most of these are not really kernels
 Better classify them as executives
 Why not kernels?
 Lots of additional infrastructure is missing

(e.g. device drivers, file systems, networking)

Notable real-time kernels

VxWorks, RTEMS, Micrium, uC/OS III.
FreeRTOS, CMX, Windows CE, ThreadX, Arm
Mbed, GHS Integrity, eCos, ITRON, Zephyr,
Nucleus, OSEK, pSOS, (Linux-RT), and so on…

Notable real-time kernels - VxWorks

 Wind River Systems
 From the early 1980s, so quite old
 Used in aerospace, automotive, medical,

consumer and so on
 Offers a large number of sub-systems for

board support, file systems, networking, etc.

Notable real-time kernels - VxWorks

 Scheduling: preemptive round-robin
 Locking: semaphores (counting and binary)
 Also spinlocks
 Memory protection: MMU support

Notable real-time kernels - VxWorks

 Famous NASA Pathfinder bug
Priority inversion problem
1. A low priority task

grabs a shared resource
2. A high priority task

blocks waiting for the shared resource
3. A medium priority task

preempts the low priority task
4. High priority task not making progress

Notable real-time kernels - VxWorks

 Was fixed by enabling priority inversion
 Low priority task gets priority of

high priority task
 Cannot be preempted by medium priority

task
 Uploaded in the Pathfinder on Mars

(How’s that for a software update?)

Notable real-time kernels - FreeRTOS

 Originally Real Time Engineers Ltd.
 Now owned by Amazon

 SafeRTOS certified for safety critical
applications

 Wittenstein High Integrity Systems

 Has some support for networking, FAT file
systems.

Notable real-time kernels - FreeRTOS

 Very popular with MCU developers
 Open source, MIT ”license”
 An executive, not an operating system
 Little infrastructure support

Notable real-time kernels - FreeRTOS

 Scheduling: FIFO, (preemptive) round-robin
 Locking: semaphores (counting and binary),

mutexes
 No MMU support (SafeRTOS does)
 IPC by messages

Real-time: Then and Now

Real-time then: Philips P800 Series

End 1960s, early 1970s

Real-time then: Philips P800 Series

(With a real lock and key to turn the system on and off)

Real-time then: Philips P800 Series

 Mini-computers (16bit) systems
 Industrial and scientific applications

(controls, data acquisition, etc.)
 Featured

Real-time clock
Hardware floating point
Memory Management Unit
Up to 63 interrupts

Real-time then: Philips P800 Series

 Specifications
4K to 32K (16 bit) words
Clock cycle 1.2µS (later 840ns)
16 General Purpose Registers
98 Instructions
Discrete TTL ICs

Real-time then : Philips P800 Series

Real-time then : Philips P800 Series

 Instruction Timing Example
Absolute Conditional Branch to Register

 Assembler ABREQ* A4
 Operation ((A4)) P➞ No need for an allocator.
 If branch taken

2 memory cycles (2 x 1.2µs)
 If branch not taken

1 logic cycle (720ns)
1 memory cycle (1.2µs)

Real-time then: Philips P800 Series

 Disk Real Time Monitor (DRTM)
 Interrupt/hardware priorities: 48
 Software priorities: 15
 Scheduling is priority based FIFO

(“the highest level active program always gets
control until it is interrupted”)

Real-time then: Philips P800 Series

 Program types
Memory resident – Always in memory
Read-only – In memory while running
Background – Lowest priority
Swappable – Written to disk after time slice

• Why easier?
Only 32K words memory: easy to keep in
your own memory

Real-time now: ARM Cortex-R8

Real-time now: ARM Cortex-R8

Floating
Point Unit

Tightly
Coupled
Memory
Interfaces

Real-time now: ARM Cortex-R8

CPU

L1 D$

L2 $

L1 I$

CPU

L1 D$

L2 $

L1 I$

L3 $

Cache hierarchy

Memory

Real-time now: ARM Cortex-R8

 Cache size
 Replacement strategy: Write back
 Fill strategy: critical word first
 Device DMA: memory and cache disageree

Must flush (parts of) the cache

 All this introduces a lot of latency
 Hard to predict timing behavior

Real-time now: ARM Cortex-R8

 Pipelines get deeper
 Cortex-A8 13 stage (integer)
 May need to flush when branching
 Branch Target Buffer to predict where a

branch will land

 Branches cause latency

Modern Hardware: PCI/PCIe

 A clock synchronization using CANbus

 New (x86) CPU
Twice as fast as the previous (”old”) one
Memory four times as fast

 Problem
Old system clock accuracy is ~1µS
New system up to 60µS and more!

Modern Hardware: PCI/PCIe

 Hardware
PCI card with CANbus

 Old system did not have PCIe

 Question: are the clocks stable?
 Answer yes: very much so

Modern Hardware: PCI/PCIe

 Experiment
 How long does a read to PCI memory take?

 Old system ~1.4µs
 New system ~3.7µs

 What is going on?

PCH

PCIe

Modern Hardware: PCI/PCIe

CPU

PCI
Root

CPU

South bridge

PCI
Root

Old New

Modern Hardware: PCI/PCIe

 Modern Peripheral Controller Hubs (PCH)
have integrated PCIe root

 PCIe is compatible with PCI 2.3
 For ease of design PCI in PCIe
 Latency doubles!

 (Just because you ask: tweaking PCIe buffering does not help)

	Dia 1
	What is real-time anyway?
	What is real-time anyway?
	Clocks
	Clocks
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Locking - Semaphores
	Locking - Mutexes
	Locking - Spinlocks
	No memory allocation?
	Notable real-time kernels
	Notable real-time kernels
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Real-time: Then and Now
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Dia 44

