Real-Time Systems,
were better in the past

Hans Zuidam,
for 040coders.nl
September 20, 2018



What is real-time anyway?

Systems that typically control some external
physical process

Algorithms must be logically correct

In a real-time system the time at which the
algorithm completes is crucial

Cannot be too late



What is real-time anyway?

* Hard real-time

The system will fail if a computation is not
completed before a specified deadline

® Soft real-time

The system can recover from missing timing
deadlines
HEN




Clocks

Contusing terminology

Real-time clock also called a wall clock
May move backward (leap seconds)
May miss ticks

Wall clocks are not good enough



Clocks

Real real-time clock is monotonic increasing
Never moves backward

Never skips a pulse

Resolution determines measurement accuracy



Scheduling algorithms

Scheduling is determining what to do next
Ease of modeling partition the system in tasks

Tasks have requirements when they should
be active

Tasks can have a number of states



Scheduling algorithms

Runnable




Scheduling algorithms

Priority based scheduling

Each task has a priority (a number)
Runnable task with the highest priority runs
Task runs until it has to wait

Only then the next highest priority task
(which is runnable) is made running

This is called FIFO aka First In First Out



Scheduling algorithms

Preemptive round-robin
Same a priority based scheduling

After an external event the “next” task must
be selected

Select the next runnable task
("next” task has same priority as previous)

Previous task is preempted



Scheduling algorithms

Earliest deadline first (EDF)

Dynamic priority algorithm

Select the task closest to its deadline
Each task has: execution time and period
Not trivial to guard against overflow



Scheduling algorithms

Rate monotonic

Each task has a (static) period

Task with shortest period runs first
Well suited for hard real-time



Locking - Semaphores

Invented by Edsger Dijkstra

Operations are called P() and V()

P() waits until the semaphore is acquired
V() releases the semaphore

No notion of a task

Can protect shared data

Can be used as inter-task signal

Ideal source for deadlocks



Locking - Mutexes

A lock with ownership

Operations are lock() and unlock()
Only the one using lock() can unlock()
Easier to use than semaphores

Typically used by shared data



Locking - Spinlocks

”Wait until a bit is set”

Compare and exchange atomic instruction
Infinite loop (ugh...)

But should be very light weight

Only a few instructions

Should loop only a a few times

Ideally suited between interrupts and tasks



No memory allocation?

Calculate maximum memory use beforehand
—+No need for an allocator.

Allocators operator on a shared pool of
available memory.
—Tasks may block competing for allocation.

Could make task private “sub-pools”

Must still be able to satisfy maximum
memory usage.



Notable real-time kernels

Many, many real-time kernels
(more than Web framework?)

Most of these are not really kernels
Better classify them as executives
Why not kernels?

Lots of additional infrastructure is missing
(e.g. device drivers, file systems, networking)



Notable real-time kernels

VxWorks, RTEMS, Micrium, uC/OS III.
FreeRTOS, CMX, Windows CE, Thread X, Arm
Mbed, GHS Integrity, eCos, ITRON, Zephyr,
Nucleus, OSEK, pSOS, (Linux-RT), and so on...



Notable real-time kernels - VxWorks

Wind River Systems
From the early 1980s, so quite old

Used in aerospace, automotive, medical,
consumer and so on

Offers a large number ot sub-systems for
board support, file systems, networking, etc.



Notable real-time kernels - VxWorks

Scheduling: preemptive round-robin
Locking: semaphores (counting and binary)
Also spinlocks

Memory protection: MMU support



Notable real-time kernels - VxWorks

* Famous NASA Pathfinder bug
Priority inversion problem

1.

A low priority task

grabs a shared resource

A high priority task

blocks waiting for the shared resource

A medium priority task

preempts the low priority task ] 1

- . .
High priority task not making progress




Notable real-time kernels - VxWorks

Was fixed by enabling priority inversion
Low priority task gets priority of

high priority task

Cannot be preempted by medium priority
task

Uploaded in the Pathfinder on Mars
(How's that for a software update?)



Notable real-time kernels - FreeRTOS

Originally Real Time Engineers Ltd.
Now owned by Amazon

SateRTOS certified for safety critical
applications

Wittenstein High Integrity Systems

Has some support for networking, FAT file
systems.



Notable real-time kernels - FreeRTOS

Very popular with MCU developers
Open source, MIT "license”

An executive, not an operating system
Little infrastructure support



Notable real-time kernels - FreeRTOS

Scheduling: FIFO, (preemptive) round-robin

Locking: semaphores (counting and binary),
mutexes

No MMU support (SateRTOS does)
IPC by messages



Real-time: Then and Now




Real-time then: Philips P800 Series

{

End 1960s, early 1970s






Real-time then: Philips P800 Series

* Mini-computers (16bit) systems

* Industrial and scientific applications
(controls, data acquisition, etc.)

* Featured
Real-time clock
Hardware floating point

Memory Management Unit

Up to 63 interrupts




Real-time then: Philips P800 Series

“ Specifications
4K to 32K (16 bit) words
Clock cycle 1.2pS (later 840ns)
16 General Purpose Registers
98 Instructions

Discrete TTL ICs




Real-time then : Philips P800 Series




Real-time then : Philips P800 Series

Instruction Timing Example
Absolute Conditional Branch to Register

Assembler ABREQ* A4
Operation ((A4)) =P
If branch taken

2 memory cycles (2 x 1.2ps)
If branch not taken

1 logic cycle (720ns)

1 memory cycle (1.2ps)



Real-time then: Philips P800 Series

Disk Real Time Monitor (DRTM)
Interrupt/hardware priorities: 48
Software priorities: 15

Scheduling is priority based FIFO
(“the highest level active program always gets
control until it is interrupted”)



Real-time then: Philips P800 Series

Program types

Why easier?
Only 32K words memory: easy to keep in
your own memory



Real-time now: ARM Cortex-RS8




Real-time now

Floating J
Point Unit

FPUO*

: ARM Cortex-R8

Tightly A

Coupled

ITCMO*

Cortex-R8 Core 0

Memory

Interfaces J

DTCMO*

Data
cache 0~

Instruction
cache 0~




Real-time now: ARM Cortex-RS8

Cache hierarchy

L1I$ L1 D$ L1I$ L1D$




Real-time now: ARM Cortex-RS8

Cache size
Replacement strategy: Write back
Fill strategy: critical word first

Device DMA: memory and cache disageree
Must flush (parts of) the cache

All this introduces a lot of latency
Hard to predict timing behavior



Real-time now: ARM Cortex-RS8

Pipelines get deeper
Cortex-A8 13 stage (integer)
May need to flush when branching

Branch Target Buffer to predict where a
branch will land

Branches cause latency



Modern Hardware: PCI/PCle

“ A clock synchronization using CANbus

“ New (x86) CPU
Twice as fast as the previous (“old”) one
Memory four times as fast

Problem
Old system clock accuracy is ~1uS

New system up to 60pS and more!




Modern Hardware: PCI/PCle

Hardware

Old system did not have PCle

Question: are the clocks stable?
Answer yes: very much so



Modern Hardware: PCI/PCle

Experiment
How long does a read to PCI memory take?

Old system ~1.4ps
New system ~3.7ps

What is going on?



Modern Hardware: PCI/PCle

New

Old
CPU

South bridge

PCI

Root




Modern Hardware: PCI/PCle

Modern Peripheral Controller Hubs (PCH)
have integrated PCle root

PCle is compatible with PCI 2.3
For ease of design PCI in PCle
Latency doubles!

(Just because you ask: tweaking PCle buffering does not help)






	Dia 1
	What is real-time anyway?
	What is real-time anyway?
	Clocks
	Clocks
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Locking - Semaphores
	Locking - Mutexes
	Locking - Spinlocks
	No memory allocation?
	Notable real-time kernels
	Notable real-time kernels
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Real-time: Then and Now
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Dia 44

