
Real-Time Systems,
were better in the past

(oh, really?)

Hans Zuidam,
for 040coders.nl
September 20, 2018

What is real-time anyway?

 Systems that typically control some external
physical process

 Algorithms must be logically correct
 In a real-time system the time at which the

algorithm completes is crucial
 Cannot be too late

What is real-time anyway?

 Hard real-time
The system will fail if a computation is not
completed before a specified deadline

 Soft real-time
The system can recover from missing timing
deadlines

Clocks

 Confusing terminology
 Real-time clock also called a wall clock
 May move backward (leap seconds)
 May miss ticks

 Wall clocks are not good enough

Clocks

 Real real-time clock is monotonic increasing
 Never moves backward
 Never skips a pulse
 Resolution determines measurement accuracy

Scheduling algorithms

 Scheduling is determining what to do next
 Ease of modeling partition the system in tasks
 Tasks have requirements when they should

be active
 Tasks can have a number of states

Running – Actively using the CPU
Runnable – Can run but other task is running
Waiting – Is waiting for something to happen

Scheduling algorithms

Running Runnable

Waiting

Scheduling algorithms

 Priority based scheduling
 Each task has a priority (a number)
 Runnable task with the highest priority runs
 Task runs until it has to wait
 Only then the next highest priority task

(which is runnable) is made running

 This is called FIFO aka First In First Out

Scheduling algorithms

 Preemptive round-robin
 Same a priority based scheduling
 After an external event the “next” task must

be selected
 Select the next runnable task

(”next” task has same priority as previous)
 Previous task is preempted

Scheduling algorithms

 Earliest deadline first (EDF)
 Dynamic priority algorithm
 Select the task closest to its deadline
 Each task has: execution time and period
 Not trivial to guard against overflow

Scheduling algorithms

 Rate monotonic
 Each task has a (static) period
 Task with shortest period runs first
 Well suited for hard real-time

Locking - Semaphores

 Invented by Edsger Dijkstra
 Operations are called P() and V()
 P() waits until the semaphore is acquired
 V() releases the semaphore
 No notion of a task
 Can protect shared data
 Can be used as inter-task signal
 Ideal source for deadlocks

Locking - Mutexes

 A lock with ownership
 Operations are lock() and unlock()
 Only the one using lock() can unlock()
 Easier to use than semaphores
 Typically used by shared data

Locking - Spinlocks

 ”Wait until a bit is set”
 Compare and exchange atomic instruction
 Infinite loop (ugh…)
 But should be very light weight
 Only a few instructions
 Should loop only a a few times
 Ideally suited between interrupts and tasks

No memory allocation?

 Calculate maximum memory use beforehand
 No need for an allocator.➞ No need for an allocator.

 Allocators operator on a shared pool of
available memory.

 Tasks may block competing for allocation.➞ No need for an allocator.
 Could make task private “sub-pools”
 Must still be able to satisfy maximum

memory usage.

Notable real-time kernels

 Many, many real-time kernels
(more than Web framework?)

 Most of these are not really kernels
 Better classify them as executives
 Why not kernels?
 Lots of additional infrastructure is missing

(e.g. device drivers, file systems, networking)

Notable real-time kernels

VxWorks, RTEMS, Micrium, uC/OS III.
FreeRTOS, CMX, Windows CE, ThreadX, Arm
Mbed, GHS Integrity, eCos, ITRON, Zephyr,
Nucleus, OSEK, pSOS, (Linux-RT), and so on…

Notable real-time kernels - VxWorks

 Wind River Systems
 From the early 1980s, so quite old
 Used in aerospace, automotive, medical,

consumer and so on
 Offers a large number of sub-systems for

board support, file systems, networking, etc.

Notable real-time kernels - VxWorks

 Scheduling: preemptive round-robin
 Locking: semaphores (counting and binary)
 Also spinlocks
 Memory protection: MMU support

Notable real-time kernels - VxWorks

 Famous NASA Pathfinder bug
Priority inversion problem
1. A low priority task

grabs a shared resource
2. A high priority task

blocks waiting for the shared resource
3. A medium priority task

preempts the low priority task
4. High priority task not making progress

Notable real-time kernels - VxWorks

 Was fixed by enabling priority inversion
 Low priority task gets priority of

high priority task
 Cannot be preempted by medium priority

task
 Uploaded in the Pathfinder on Mars

(How’s that for a software update?)

Notable real-time kernels - FreeRTOS

 Originally Real Time Engineers Ltd.
 Now owned by Amazon

 SafeRTOS certified for safety critical
applications

 Wittenstein High Integrity Systems

 Has some support for networking, FAT file
systems.

Notable real-time kernels - FreeRTOS

 Very popular with MCU developers
 Open source, MIT ”license”
 An executive, not an operating system
 Little infrastructure support

Notable real-time kernels - FreeRTOS

 Scheduling: FIFO, (preemptive) round-robin
 Locking: semaphores (counting and binary),

mutexes
 No MMU support (SafeRTOS does)
 IPC by messages

Real-time: Then and Now

Real-time then: Philips P800 Series

End 1960s, early 1970s

Real-time then: Philips P800 Series

(With a real lock and key to turn the system on and off)

Real-time then: Philips P800 Series

 Mini-computers (16bit) systems
 Industrial and scientific applications

(controls, data acquisition, etc.)
 Featured

Real-time clock
Hardware floating point
Memory Management Unit
Up to 63 interrupts

Real-time then: Philips P800 Series

 Specifications
4K to 32K (16 bit) words
Clock cycle 1.2µS (later 840ns)
16 General Purpose Registers
98 Instructions
Discrete TTL ICs

Real-time then : Philips P800 Series

Real-time then : Philips P800 Series

 Instruction Timing Example
Absolute Conditional Branch to Register

 Assembler ABREQ* A4
 Operation ((A4)) P➞ No need for an allocator.
 If branch taken

2 memory cycles (2 x 1.2µs)
 If branch not taken

1 logic cycle (720ns)
1 memory cycle (1.2µs)

Real-time then: Philips P800 Series

 Disk Real Time Monitor (DRTM)
 Interrupt/hardware priorities: 48
 Software priorities: 15
 Scheduling is priority based FIFO

(“the highest level active program always gets
control until it is interrupted”)

Real-time then: Philips P800 Series

 Program types
Memory resident – Always in memory
Read-only – In memory while running
Background – Lowest priority
Swappable – Written to disk after time slice

• Why easier?
Only 32K words memory: easy to keep in
your own memory

Real-time now: ARM Cortex-R8

Real-time now: ARM Cortex-R8

Floating
Point Unit

Tightly
Coupled
Memory
Interfaces

Real-time now: ARM Cortex-R8

CPU

L1 D$

L2 $

L1 I$

CPU

L1 D$

L2 $

L1 I$

L3 $

Cache hierarchy

Memory

Real-time now: ARM Cortex-R8

 Cache size
 Replacement strategy: Write back
 Fill strategy: critical word first
 Device DMA: memory and cache disageree

Must flush (parts of) the cache

 All this introduces a lot of latency
 Hard to predict timing behavior

Real-time now: ARM Cortex-R8

 Pipelines get deeper
 Cortex-A8 13 stage (integer)
 May need to flush when branching
 Branch Target Buffer to predict where a

branch will land

 Branches cause latency

Modern Hardware: PCI/PCIe

 A clock synchronization using CANbus

 New (x86) CPU
Twice as fast as the previous (”old”) one
Memory four times as fast

 Problem
Old system clock accuracy is ~1µS
New system up to 60µS and more!

Modern Hardware: PCI/PCIe

 Hardware
PCI card with CANbus

 Old system did not have PCIe

 Question: are the clocks stable?
 Answer yes: very much so

Modern Hardware: PCI/PCIe

 Experiment
 How long does a read to PCI memory take?

 Old system ~1.4µs
 New system ~3.7µs

 What is going on?

PCH

PCIe

Modern Hardware: PCI/PCIe

CPU

PCI
Root

CPU

South bridge

PCI
Root

Old New

Modern Hardware: PCI/PCIe

 Modern Peripheral Controller Hubs (PCH)
have integrated PCIe root

 PCIe is compatible with PCI 2.3
 For ease of design PCI in PCIe
 Latency doubles!

 (Just because you ask: tweaking PCIe buffering does not help)

	Dia 1
	What is real-time anyway?
	What is real-time anyway?
	Clocks
	Clocks
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Scheduling algorithms
	Locking - Semaphores
	Locking - Mutexes
	Locking - Spinlocks
	No memory allocation?
	Notable real-time kernels
	Notable real-time kernels
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - VxWorks
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Notable real-time kernels - FreeRTOS
	Real-time: Then and Now
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then : Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time then: Philips P800 Series
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Real-time now: ARM Cortex-R8
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Modern Hardware: PCI/PCIe
	Dia 44

