
Test Driven Development:
Pair programming to the max

Klaas van Gend, 040coders.nl, March 15, 2018

1

Klaas van Gend

▪ Hobby:

▪ Hobby: {040coders.nl}

▪ Hobby:

2

3

1949 1953

4

“source”

“optics”

“stage”

“more optics”

“flu screen”

4 meter

FEI acquired Philips Electron Optics and kept building bigger and better electron
microscopes.

5

Nobel Prize Chemistry 2017

awarded to 3 developments

surrounding the Titan Krios

Nobel Prize Chemistry 2017

awarded to 3 developments

surrounding the Titan Krios

Nobel Prize Chemistry 2017

awarded to 3 developments

surrounding the Titan Krios

Nobel Prize Chemistry 2017

awarded to 3 developments

surrounding the Titan Krios

Nobel Prize Chemistry 2017

awarded to 3 developments

surrounding the Titan Krios

Now part of

Thermo Fisher acquired FEI in 2016.
Last year, they were indirectly awarded for their efforts by a Nobel prize for
Chemistry, awarded to three researchers that stood at the base of the Titan Krios and
Cryo-Electron Microscopy – which is a huge breakthrough in “life science”, able to
make detailed pictures of e.g. large complex proteins.

6

On the PC runs a lot of applications, including ‘Acquisition Server’, approx. 400kloc,
C++11, written using Visual Studio 2013. In total in Eindhoven around 90 SW
developers, on AcqSvr 16. Klaas is Scrum Master and Senior developer of the
“Scanning Team”. The other team is the “Camera Team”. Other groups build the
software for optics, sample management, vacuum, GUI, etc.

Then, some components were end-of-life and an important part of the rack needed a
redesign. Unfortunately, Acquisition Server was very closely tied to the old hardware.
We’re now almost at the end of a 3-man 2 year project to unmarry the software,
abstract the hardware and make Acquisition Server hardware independent – it must
be able to control both the old and the new hardware.
All normal software deliveries had to continue. Essentially, we had to remodel the
shop while it was open – without interfering with the customers.
To start with that large redesign, we needed to be sure that we wouldn’t break
anything. So we started by looking at our tests.

7

manual

smoke

unit

manual

smoke

unit tests

The

old days
Developers tested all

changes on a microscope

– waiting on their turn.

Testing happened long after

development was completed.

Developers had forgotten the

details of their code by then…

Fast

Feedback
Immediately run unit

tests during develop-

ment; but definitely

before check-in.

Smoke tests cover

integration and

can be run

locally.

Original Smoke tests: Nunit / Boost::Test Unit Tests: Gtest / Gmock

Why not stick with Boost::Test? Mocking sounded very alluring…

The problem of only having integration tests?
There’s no decomposition of the test code, whereas there is decomposition of the
code.
This means that all tests touch roughly the same code – breaking a single piece
breaks many tests or nothing at all.
One breaking unit test shows very clearly where your issue is.

8

The Quality of Code: TEST IT

Michael Feathers,

“Working Effectively with Legacy Code”, 2004:

▪ Legacy Code = all code without tests

Robert C. Martin,

“Clean Code: A Handbook of Agile Software Craftmanship”, 2008

▪ Code, without tests, is not clean. No matter how elegant it is, no matter how

readable and accessible, if it hath not tests, it be unclean.

Beyoncé Giselle Knowles-Carter,

“I Am… Sasha Fierce”, 2008:

▪ If you liked it,

then you should have put a test on it*

*: No, you should have written the test first!

We’ll talk more about TDD and legacy code later.

9

TDD in three/four steps

TEST

FAILREFACTOR

CODE

Write a TEST -> make it FAIL -> add just enough CODE -> write a new TEST that FAILS -
> add just enough more CODE -> REFACTOR and run again.

10

Your first test…

▪ Remember:

▪ First write the test

▪ The test must FAIL

(in this case: compile fail)

▪ Then the implementation

TEST

FAILREFACTOR

CODE

11

Add code, just until the test passes…

TEST

FAILREFACTOR

CODE

12

https://github.com/djeedjay/BoostTestUi Visual Studio 2013+

TEST

FAILREFACTOR

CODE

13

Add just enough test
Add just enough code

TEST

FAILREFACTOR

CODE

Don’t forget to commit when all tests are green!

TDD changed our work flow: we now push much more but smaller changesets to our
repositories.

14

Ping-pong pair programming

KEEP EACH OTHER SHARP

▪ “A” writes the smallest new test

▪ “B” writes the smallest amount of code

▪ “B” refactors if needed

▪ “B” writes the next smallest new test

▪ “A” writes the smallest amount of code

▪ “A” refactors if needed

... And so on…

TEST

FAILREFACTOR

CODE

One of the benefits of ping-pong pair programming is that you have two engineers at
the peak of their abilities – up to 6 hours per day.
Are you really productive for 6 hours? Research has shown that most engineers only
do “real work” for about 2 hours a day.

Preframe: but… what makes ping-pong really shine?
I’m going to tell you why our best developers switched on, next!

15

CHEAT – while writing tests and while writing code !!!

16

Why cheat?

▪ Sharper tests

▪ If you can cheat the answer, the test isn’t specific enough

▪ Come up with corner cases

▪ Error handling as part of the regular flow

▪ Improves code robustness

▪ Don’t write code you don’t need

▪ Engineers love to gold plate!

▪ More challenge!

▪ keep each other sharp

One of my dear co-workers also likes to cheat the reverse way – he sometimes just
removes code while all tests keep functioning. That’s of course very bad.

17

Why refactor?

▪ Remove or "avoid" duplicate code

▪ Refactor in order to be able to write the next failing test

▪ Refactor both the code and tests: equally important

▪ Don't refactor if not necessary ;)

TEST

FAILREFACTOR

CODE

Refactoring is VERY important and cannot go wrong.
After all, you’re doing small steps, right?
And you have a set of good tests – so if you mess up, it will show.

18

Why keep the cycle short?

▪ Forces to write only a few lines

▪ No Need for Debugging

▪ You only added a few lines, right?

▪ Committing + Delivering/Pushing often

▪ Helps keeps merges simple

19

Image from training material by QWAN

TDD also works very well in the larger picture.

20

It grows…

21

Using agile or TDD is no excuse

DESIGN COMES FIRST

Rotate() Rotate()Rotate()

Obviously, start with a design (or at least a decomposition) in mind (or on paper).

In our experience, we often wind up somewhere different – better.
Usually more (but smaller) classes with better defined responsibilities.

22

Yup, there’s code duplication in this test.

23

Testing the Spark()

24

Testing the Spark()

25

How to test innards?

???

So, how do we get to test that the sparkplug was sparked?

The next part is key to TDD: a change in how your construct your objects and test
them.

26

Care for Spark() call, not SparkPlug

Test Code MockSparkPlug.h

For now, let’s keep the test understandable – it’s “not the best test ever”.

First rotate turns from INTAKE to COMPRESSION
Second rotate turns from COMPRESSION to COMBUSTION
We only expect a call to Spark() at COMBUSTION.

Google Mock & Google Test do the work.
Note that we have to write the “mock” ourselves – that’s automated by
“HippoMocks”.

27

Dependency Injection!

Dependency injection: instead of having the class create its innards, we provide them
in a “Factory”.
The advantage: really improves testability.
The disadvantage: the Factories get more complex.

In our code, the Factories roughly are the only ones not following the ‘4-5 lines per
function’ and ‘max 100 lines per file’ rules.

28

Fixtures

29

Expect call to m_pSpark::Spark()

Fixture Test code

dependency injection

in action

Test fails if this call didn’t happen.

The TEST_F macro creates a new subclass of the Fixture called
CylinderTest_Spark_on_Combustion – so you can access any public member of the
Fixture as your own.
For every test, the fixture is destructed and constructed again – because every test is
in a different class.

This code also shows a common issue with passing unique_ptr: you loose the
contents after construction. So we have to keep an old-fashioned pointer around for
future use.

But… Pay attention to the real requirement: the call must happen AFTER the first
rotate(), but we didn’t specify whether during/after 2nd or 3rd or during destruction…
Ordering is important here!!!
So, putting the EXPECT before for the first rotate() has the same effect.
Note that putting the EXPECT between the 2nd and the 3rd will fail the test.

30

Forcing EXPECT_CALL #1a

One way to enforce EXPECT_CALL to work, is by providing a “cardinality” – Times(0)
means it has to never be called.

31

Forcing EXPECT_CALL #1b

One way to enforce EXPECT_CALL to work, is by providing a “cardinality” – Times(0)
means it has to never be called.

32

A little detail of Gmock

33

Forcing EXPECT_CALL #2

Another way is to use a StrictMock (the reverse is a NiceMock).

34

“Special” Expectations

Returning values Invoking lambda’s

WARNING: play close attention:
WillOnce(): exactly 1 time;
WillRepeatedly(): 0 or more !!!

35

Gmock’s achilles heel:
std::unique_ptr

▪ Gmock has an issue accepting or returning

noncopyables like std::unique_ptr.

▪ Workarounds exist, e.g.:

virtual std::unique_ptr<Thing> nonCopyableReturn()

{

return std::unique_ptr<Thing>(nonCopyableReturnProxy());

}

MOCK_METHOD0(nonCopyableReturnProxy,Thing* ());

There’s a lot more to google mock and test that I cannot show. The documentation is
very good.

36

Dummy object passed around but never actually used. Usually, dummies are just used to fill

parameter lists of the constructor for the unit under test.

Fake an object with actually working implementations, but usually takes some shortcut which

makes them not suitable for production (an in-memory database is a good example).

Stub provides canned answers to calls made during the test, usually not responding at all to

anything outside what's programmed in for the test.

Spy a stub that also records some information based on how they were called. One form of

this might be an email service that records how many messages it was sent.

Mock object pre-programmed with expectations which form a specification of the calls they

are expected to receive.

https://www.martinfowler.com/articles/mocksArentStubs.html

Behavior State Expectations,

(set outside class)

Dummy
  

Stub
✓  

Fake
✓ ✓ 

Mock
  ✓

These two tables are part of our internal “cheat sheet” – detailing what features of
gmock and gtest we use where, how and why. It’s a subset of all that’s possible.

37

How do we deal
with Legacy Code

38

Test Driven Development vs Legacy Code #1

▪ Our “Acquisition Server”:

▪ 400 kloc, tightly coupled to “PIA” hardware

▪ Integration tests with decent coverage

▪ Using simulators and hardware-in-the-loop

▪ Hardly any unit tests

▪ Our job:

▪ Keep existing support, add code for new hardware

▪ How?

manual

smoke

unit

manual

smoke

unit tests

Remember Michael Feathers statement?

39

Test Driven Development vs Legacy Code #2

Repeat the following process until done:

1. Pick a subsystem

▪ Check the integration tests

2. Define an abstraction

3. Rewrite existing code

▪ Check the integration tests

4. Build new code using TDD

▪ Check that the integration tests also pass on the new code

Again, refactoring was key to our success: we had working tests – albeit at a higher
level – and could start from there.

40

41

Challenges

▪ Stick to the plan: TDD: Write Test First

▪ When to add logging?

▪ Keep tests short & simple

▪ Internal state makes it hard

▪ Brittle tests

▪ Not enough refactoring on test code !!!

▪ Legacy code

▪ Where to start?

42

Benefits

▪ TDD:

▪ Near 100% code coverage “for free”

▪ Usually short functions: < 5 lines

▪ Self-documenting names

▪ Ping-Pong Pair Programming:

▪ Spreading knowledge across team

▪ 2 Engineers know all about it

▪ Junior & senior pairing works well

▪ Gtest/Gmock:

▪ Easy to make lots of tests

▪ Fixtures allow for reuse across tests

43

www.sioux.eu

Klaasvan.gend@Thermofisher.com

Klaas.van.gend@Sioux.eu

Klaas@040coders.nl

45

